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P R E F A C E  

PHILOSOPHY AND GOALS 

The purpose of the third edition of this book is to provide a basis for understanding 
the characteristics, operation, and limitations of semiconductor devices. In order to 
gain this understanding, it is essential to have a thorough knowledge of the physics of 
the semiconductor material. The goal of this book is to bring together quantum me- 
chanics, the quantum theory of solids, semiconductor material physics. and semicon- 
ductor device physics. All of these components are vital to the understanding of both 
theoperation of present day devices and any future development in the field. 

The amount of physics presented in this text is greater than what is covered in 
many introductory semiconductor device books. Although this coverage is more ex- 
tensive, the author has found that once the basic introductory and material physics 
have been thoroughly covered. the physics of the semiconductor device follows quite 
naturally and can he covered fairly quickly and efficiently. The emphasis on the un- 
derlying physics will also be a benefit in understanding and perhaps in developing 
new semiconductor devices. 

Since the objective of this text is to provide an introduction to the theory of 
semiconductor devices, there is a great deal of advanced theory that is not consid- 
ered. In addition. fabrication processes are not described in detail. There are a few 
references and general discussions about processing techniques such as diffusion 
and ion implantation, but only where the results of this processing have direct im- 
pact on device characteristics. 

PREREQUISITES 

This book is intended for junior and senior undergraduates. The prerequisites for un- 
derstanding the material are college mathematics. up to and including differential 
equations, and college physics, including an intn~duction to modern physics and 
electrostatics. Prior completion of an introductory course in electronic circuits is 
helpful, but not essential. 

ORGANIZATION 

The text begins with the introductory physics, moves on to the semiconductor mate- 
rial physics, and then covers the physics of semiconductor devices. Chapter 1 presents 
an introduction to the crystal structure of solids, leading to the ideal single-crystal 
semiconductor material. Chapters 2 and 3 introduce quantum mechanics and the 
quantum theory of solids, which together provide the necessary basic physics. 

Chapters4 through6 cover the semiconductormaterial physics. Chapter4 presents 
the physics of the semiconductor in thermal equilibrium; Chapter 5 treats the transport 



phenomena of the charge carriers in a semiconductor. The nonequilibrium excess car- 
rier characteristics are then developed in Chaptcr 6. Understanding the behavior of ex- 
cess carriers in a semiconductor is vital to the goal of understanding the device physics. 

The physics of the basic semiconductor devices is developed in Chapters 7 through 
13. Chaptcr 7 treats the electrostatics of the basic pnjunction. and Chapter 8 covers the 
current-voltage characteristics of the pn junction. Metal-semiconductorjunctions, both 
rectifying and nonrectifying. and semiconductor heterojunctions are considered in 
Chapter 9, while Chapter 10 treats the bipolar transistor. The physics of the metal- 
oxide-semiconductor field-effect transistor is presented in Chapters I I and 12. and 
Chapter 13 covers the junction field-effect transistor. Once the physics of the pn junc- 
tion is developed, the chapters dealing with the three basic transistors may be covered 
in any order-these chapters are written so as not to depend on one another. Chapter 14 
considers optical devices and finally Chapter 15 covers power semiconductor devices. 

USE OF THE BOOK 
The text is intended fhr a one-semester course at the junior or senior level. As with 
most textbooks, there is more material than can be conveniently covered in one 
semester; this allows each instructor some flexibility in designing the course to hislher 
own specific needs. Two poshible orders of presentation are discussed later in a sepa- 
rate section in this preface. However, the text is not an encyclopedia. Sections in each 
chapter that can be skipped without loss of continuity are identified by an asterisk in 
both the table of contents and in thechapter itself. These sections, althoughimportant 
to the development of semiconductor device physics, can be postponed to a later time. 

The material in the text has been used extensively in a course that is required 
for junior-level electrical engineering students at the University of New Mexico. 
Slightly less than half of the semester is devoted to the first six chapters; the remain- 
der of the semester is devoted to the pn junction, thc bipolar transistor. and the metal- 
oxide-semiconductor field-effect transistor. A few other special topics may be briefly 
considered near the end of the semester. 

Although the bipolar transistor is discussed in Chapter I0 before the MOSFET or 
JFET, each chapter dealing with one of the three basic types of transistors is written 
to stand alone. Any one of the transistor types may he covered first. 

NOTES TO THE READER 
This book introduces the physics of semiconductor materials and devices. Although 
many electrical engineering students are more comfortable building electronic cir- 
cuits or writing computer programs than studying the underlying principles of semi- 
conductor devices, the material presented here is vital to an understanding of the 
limitations of electronic devices, such as the microprocessor. 

Mathematics is used extensively throughout the hook. This may at times seem 
tedious, but the end result is an understanding that will not otherwise occur. Although 
some of the mathematical models used to describe physical processes may seem 
abstract, they have withstood the test of time in their ability to describe and predict 
these physical processes. 



The reader is encouragedto continually refer to thepreview sections so that the oh- 
jective of the chapter and the purposes of each topic can be kept in mind. This constant 
review is especially important in the first live chapters, dealing with basic physics. 

The reader must keep in mind that, although some sections may be skipped without 
loss of continuity, many instructors will choose to cover these topics. The fact that sec- 
tions are marked with an asterisk does not minimize the importance of these subjects. 

It is also important that the reader keep in mind that there may be questions still 
unanswered at the end of a course. Although the author dislikes the phrase. "it can be 
shown that.. .," there are some concepts used here that rely on derivations beyond 
the scope of the text. This hook is intended as an introduction to the subject. Those 
questions remaining unanswered at the end of the course, the reader is cncouraged to 
keep "in a desk drawer." Then, during the next course in this area of concentration, 
the reader can take out these questions and search for the answers. 

ORDER OF PRESENTATION 

Each instructor has a personal preference for the order in which the course material 
is presented. Listed below are two possible scenarios. The first case, called the clas- 
sical approach, covers the bipolar transistor before the MOS transistor. However, 
because the MOS transistor topic is left until the end of the semester. time constraints 
may shortchange the amount of class time devoted to this important topic. 

The second method of presentation listed, called the nonclassical approach, dis- 
cusses the MOS transistor before the bipolar transistor. Two advantages to this ap- 
proach are that the MOS transistor will not get shortchanged in terms of time devoted 
to the topic and, since a "real device" is discussed earlier in the semester, the reader 
may have more motivation to continue studying thih course material. A possible 
disadvantage to this appnmh is that the reader may be somewhat intimidated by 
jumping from Chapter 7 to Chapter I I. However, the material in Chapters I I and I? 
is written so that this jump can be made. 

Unfortunately, because of time constraints, every topic in evcry chapter cannot 
be covered in a one-semester course. The remaining topics must be left for a second- 
semester course or for further study by the reader. 

Classical approach 

Chapter 1 
Chapters 2, 3 

Chapter 4 
Chapter 5 
Chapter 6 
Chapters 7.8 
Chapter 9 
Chapter 10 

Crystal structure 
Selectcd topics from quantum 
mechanics and theory of solids 
Semiconductor physics 
Transport phenomena 
Selected topic, from nirnequilibrium characteristics 
The pn junction and diode 
A brief discussion of the Schottky diode 
The bipolar transistor 

Chapters 11, 12 The MOS tran\l\tor 



Nonclassical approach 

Chapter l Crystal structure 
Chaptcrs 2, 3 Selected mpics from quantum 

mechanics and theory of solids 
Chapter 4 Semiconductor physics 
Chapter 5 Transpon phenomena 
Chapter 7 The pn junction 
Chapters I I ,  12 The MOS transistor 
Chapter 6 Selected topics from nonequilibrium characteristics 
Chapter 8 The pniunction diode 
Chapter 9 A hrief discussian of the Schottky diode 
Chaoter 10 The bi~olar transistor 

FEATURES OF THE THIRD EDITION 

W Preview section: A preview section introduces each chapter. This preview 
links the chapter to previous chapters and states the chapter's goals, i.e., what 
the reader should gain from the chapter. 

W Exumples: An extensive number of worked examples are used throughout the 
text to reinforce the theoretical concepts being developed. These examples 
contain all the details of the analysis or design, so the reader does not have to 
fill in missing steps. 

W Test your underctunding: Exercise or drill problems are included throughout 
each chapter. These problems are generally placed immediately after an 
example problem, rather than at the end of a long section. so that readers can 
immediately test their understanding of the material just covered. Answers are 
given for each drill problem so readers do not have to search for an answer at 
the end of the book. These exercise problelns will reinforce readers' grasp of 
the material before they move on to the next section. 

W Summan section: A summary section, in bullet form, follows the text of each 
chapter. This section summarizes the overall results derived in the chapter and 
reviews the basic concepts developed. 

W Glossary of importunt terms: A glossary of important terms follows the 
Surnrnary section of each chapter. This section defines and summarizes the 
most important terms discussed in the chapter. 

M Checkpoint: A checkpoint section follows the Glossary section. This section 
states the goals that should have been met and states the abilities the reader 
should have gained. The Checkpoints will help assess progress before moving 
on to the next chapter. 

W Review questions: A list of review questions is included at the end of each 
chapter. These questions serve as a self-rest to help the reader determine how 
well the concepts developed in the chapter have been mastered. 

W End-of-chupterproblems A large number of problems are given at the end of 
each chapter, organized according to the subject of each section in the chapter 
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body. A larger number of prohlems have been included than in the hecond 
edition. Design-oriented or open-ended problems are included at the end in a 
Summary and Review section. 

W Computersimulurion: Computer simulation problems are included in many 
end-of-chapter problems. Computer simulation has not been directly 
incorporated into the text. However, a website has been established that 
considers computer simulation using MATLAB. This website contains 
computer simulations of material considered in most chapters. These computer 
simulations enhance the theoretical material presented. There also are exercise 
or drill problems that a reader may consider. 

W Reading list: A reading list finishes up each chapter. The references, that are 
at an advanced level compared with that of this text, are indicated by an 
asterisk. 
Answers to srlertedproblems: Answers to selected problems are given in the 
last appendix, Knowing the answer to a problem is an aid and a reinforcement 
in problem solving. 

ICONS 
-- Computer Simulations b * 

Design  problem^ and Examples 

C 

SUPPLEMENTS 

This hook is supported by the following supplements: 

Solutions Manual available to instructors in paper form and on the website. 
W Power Point slides of important figures are available on the website. 

Computer simulations are available on the wehsite. 
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P R O L O G U E  

Semiconductors and the 
Integrated Circuit 

P R E V I E W  

W e often hear that we are living in the information age. Large amounts of 
information can be obtained viathe Internet, for example, and can also be 
obtained quickly over long distances via satellite communication sys- 

tems. The development of the transistor and the integrated circuit (IC) has lead to 
these remarkable capabilities. The IC permeates almost every facet of our daily lives, 
including such things as the compact disk player, the fax machine, laser scanners at 
the grocery store, and the cellular telephone. One of the most dramatic exarnples of 
IC technology is the digital computer-a relatively small laptop computer today has 
more computing capability than the equipment used to send a man to the moon a few 
years ago. The semiconductor electronics field continues to be a fast-changing one, 
with thousands of technical papers published each year. W 

HISTORY 
The semiconductor device has a fairly long history, although the greatest explosion 
of IC technology has occured during the last two or three decades.' The metal- 
semiconductor contact dates back to the early work of Rraun in 1874, who discov- 
ered the asymmetric nature of electrical conduction between metal contacts and 
semiconductors, such as copper, iron, and lead sulfide. These devices were used as 

'This hrief introduction is intended to give a Awor of the history u f r h e  arnliconductur devicc and 
integrated circuit. Thousand\ o f  engineers and scientists hake made significilnl contrihutiun\ to the 
development of semtconductor electronics-the few events and nanica mentioned here are nut meant 
to imply that these are the only significant e v e n u  or people involved in thc semicnnductor history. 
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detectors in early experiments on radio. In 1906, Pickard took out a patent for a point 
contact detector using silicon and, in 1907. Pierce published rectification character- 
istics of diodes made by sputtering melals onto a variety of semiconductors. 

By 1935. seleniuni rectifiers and silicon point contact diodes were available for 
use as radio detectors. With the developn~ent of  radar. the need for detector diodes 
and mixers increased. Methods of achieving high-purity silicon and germanium were 
developed during this time. A signiticant advance in our understanding of the metal- 
semiconductor contact was aided by developments in the semiconductor physics. 
Perhaps most important during this period was Bethe's thcrnmionic-emission theory 
in 1942, according to which thc current is determined by the process of emission of 
electrons into the metal rather than by drift or ditbsion. 

Another big breakthrough came in December 1947  hen the first transistor was 
constructed and tested at Bell Telephone Laboratories by William Shockley, John 
Bardeen, and Walter Brattain. This tirst trar~sisror was apointcontact device and used 
polycrystalline germanium. The transistor effect was soon demonstrated in silicon as 
well. A significant improvement occurred at the end of 1949 when single-crystal 
material was used rather than the polycrystalline material. The single crystal yields 
uniform and improved properties throughout the whole semiconductor material. 

The next significant step in the derelopment of the transistor was the use nf thc 
diffusion process to form the necessasy junctions. This process allowed better control 
of the transistor characteristics and yielded higher-frequency devices. The diffused 
mesa transistor was commercially available in germanium in 1957 and in silicon in 
1958. The diffusion process also allowed many transistors tc> be fabricated on a sin- 
gle silicon slice. so the cost of these devices decrcased. 

THE INTEGRATED CIRCUIT (IC) 
Up to this point, each component in an electronic circuit had to he individually con- 
nected by wires. In September 1958. Jack Kilby of Texas Instruments demonstrated 
the first integrated circuit, which was fabricated in germanium. At about the same 
time, Robert Noyce of Fairchild Semiconductor introduced the integrated circuit in 
silicon using a planar technology. The tirst circuit used bipolar transistors. Practical 
MOS transistors were then developed in the mid-'60s. Thc MOS technologies, espe- 
cially CMOS, have become a major focus for IC design and development. Silicon is 
the main semiconductor material. Gallium arsenide and other compound semicon- 
ductors are used for special applications requiring vcry high frequency devices and 
for optical devices. 

Since that first IC, circuit design has become more mphisticated. and the inte- 
grated circuit more complex. A single silicon chip may be on the order of 1 square 
centimeter and contain over a million transistors. Some 1Cs may have more than a 
hundred terminals, while an individual transibtor has only thrce. An IC can contain 
the arithmetic, logic. and memory functions on a single semiconductor chip-the 
primary example of this type of IC is the microprocessor. Intense research on silicon 
processing and increased automation in design and manufacturing have lcd to lower 
costs and higher fabrication yields. 



FABRICATION 
The integrated circuit is a direct result of the develqx~~ent  of various processing tech- 
niques needed to fabricate the transistor and interconnect lines on the single chip. 
The total collection of these processes for making an IC is called a rechnolog?. The 
following few paragraphs provide an introduction to a few of these processes. This 
introduction is intended to provide the reader with some of the basic terminology 
used in processing. 

Thermal Oxidation A major reason for the success of silicon ICs is the fact that an 
excellent native oxide, S O z ,  can be formed on the surface of silicon. This oxide is 
used as a gate insulator in the MOSFET and is also used as an insulator, known as the 
field oxide, between devices. Metal interconnect lines that connect various devices 
can be placed on top of the field oxide. Most other semiconductors do not form na- 
tive oxides that are of sufficient quality to be used in device fabrication. 

Silicon will oxidize at room temperature in air forming a thin native oxide of ap- 
proximately 25 A thick. However, most oxidations are done at elevated temperatures 
since the basic process requires that oxygen diffuse through the existing oxide to the 
silicon surface where a reaction can occur A schematic of the oxidation process 
is shown in Figure 0.1. Oxygen diffuses across a stagnant gas layerdirectly adjacent 
to the oxide surface and then diffuscs through the existing oxide layer to the silicon 
surface where the reaction between 0 2  and Si forms Si02. Because of this reaction, 
silicon is acLually consumed from the surface of the silicon. The amount or silicon 
consumed is approximately 44 percent of the thickness of the find oxide. 

Photomasks and Photolithography The actual circuitry on each chip is created 
through the use of photomasks and photolithography. The photomask is a physical 
representation of a device or a portion of a device. Opaque regions on the mask are 
made of an ultraviolet-light-absorbing material. A photosensitive layer, called p h o ~  
toresist, is first spread over the surface of the semiconductor. The photoresist is an 
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Figure 0.1 I Schematic of the oxidation 
pnxess. 
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Figure 0.2 I Schematic showing the u w  of a photomask 

organic polymer that undergoes chemical change when exposed to ultraviolet light. 
The photoresist is exposed to ultraviolet light through the photomask as indicated in 
Figure 0.2. The photoresist is then developed in a chemical solution. Thc developer 
is used to remove the unwanted portions of the photoresist and generate the appro- 
priate patterns on the silicon. The photomasks and photolithography process is 
critical in that it determines how small the devices can he made. Instead of using 
ultraviolet light, electrons and x-rays can also be used to expose the photoresist. 

Etching After the photoresist pattern is formed, the remainmg photoresist can be 
used as a mask, so that the material not covered by the photoresist can be etched. 
Plasma etching is now the standard process used in IC fabrication. Typically. an etch 
gas such as chlorofluorocarbons are injected into a low-pressure chamber. A plasma is 
created by applying :I radio-frequency voltage between cathode and anode terminals. 
The silicon wafer is placed on the cathode. Positively charged ions in the plmma are 
accelerated toward the cathode and bombard the wafer normal to the surface. The 
actual chemical and physical reaction at the surface is complex. but the net result is 
that silicon can he etched anisotropically in  very selected regions of the wafer. If pho- 
toresist is applied on the surfacc o l  silicon dioxide. then the silicon dioxide can also 
be etched in a similar way. 

Diffusion A thermal process that is used extensively in IC fabrication is diffusion. 
Diffusion is the process by which specific types of "impurity" atoms can be intro- 
duced into the silicon material. This doping process changes the conductivity type of 
the silicon so that pn junctions can be formed. (The pn junction is a basic building 
block of semiconductor devices.) Silicon wafers are oxidized to f i~rm a layer of sili- 
con dioxide and windows are opened in thc oxide in selected areas using photolitho- 
graphy and etching as just described. 

The wafers are thcn placed in a high-temperature lumace (about 1100 C) and 
dopant atoms such as boron or phosphorus are introduced. The dopant atoms gradu- 
ally diffuse or move into the silicon due lo a density gradient. Since the diffusion 
process requires a gradient in the concentration of atoms, the final concentration of 
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diffused atorns is nonlinear. as shown in Figure 0.3. When the wafer is removed from 
the furnace and the wafer temperature returns to room temperature, the diffusion co- 
efficient of the dopant atorns is essentially zero so that the dopant atoms are then 
fixed in the silicon material. 

Ion Implantation A fabrication process that is an alternative to high-temperature 
diffusion is ion implantation. A beam of dopant ions is accelerated to a high energy 
and is directed at the surface of a semiconducton As the ions enter the silicon, they 
collide with silicon atoms and lose encrgy and finally come to rest at some depth 
within the crystal. Since the collision process is statistical in nature, there is a distri- 
bution in the depth of penetration of the dopant ions. Figure 0.4 shows such an ex- 
ample of the implantarion of boron into silicon at a particular energy. 

Two advantages of the ion implantation prucess compared to diffusion are 
( I )  the ion implantation process is a low temperature process and (2) very well de- 
fined doping layers can be achieved. Photoresist layers or layers of oxide can he used 
to block the penetration of dopant atoms so that ion implantation can occur in very 
selected regions of the silicon. 

I \ 
Surface Di51;mcr ----C 

Figure 0.3 1 Final concentration of diffuxd 
im~urities inlo the suriace o ia  serniconduccor. 

Figure 0.4 1 Final concentration of 
ion-implanted honm inlo silicun. 
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One disadvantage of ion implantation is that the silicon crystal is damaged 
by the penetrating dopant atoms because of collisions between the incident dopant 
atoms and the host silicon atoms. However, most of the damage can he removed by 
thermal annealing the silicon at an elevated temperature. The thermal annealing tem- 
perature, however, is normally much less that the diffusion process temperature. 

Metallization, Bonding, and Packaging After the semiconductor devices have 
been fabricated by the processing steps discussed. they need to be connected to each 
other to form the circuit. Metal films are generally deposited by a vapor deposition 
technique and the actual interconnect lines are formed using photolithography and 
etching. In general, a protective layer of silicon nitride is finally deposited over the 
entire chip. 

The individual integrated circuit chips are separated by scribing and breaking the 
wafer.The integratedcircuit chip is then mounted in apackage. Lead bonders are finally 
used to attach gold or aluminum wires between the chip and package terminals. 

Summary: Simplified Fabrication of a pn Jnnctiun Figure 0.5 shows the basic 
steps in fomung a pn junction. These steps involve some of the processing described 
in the previous paragraphs. 
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Figure 0.5 1 The ba~ic  steps in fanning a pn junction. 
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The Crystal Structure of Solids 

P R E V I E W  

T his text deals with the electrical properties and characteristics of semicon- 
ductor materials and devices. The electrical properties of solids are therefore 
of primary interest. The semiconductor is in general a single-crystal material. 

The electrical properties of a single-crystal material are determined not only by the 
chemical composition but also by the arrangement of atoms in the solid; this being 
true, a brief study of the crystal structure of solids is warranted. The formation, or 
growth, of the single-crystal material is an important part of semiconductor technol- 
ogy. A short discussion of several growth techniques is included in this chapter to 
provide the reader with some of the terminology that describes semiconductor device 
structures. This introductory chapter provides the necessary background in single- 
crystal materials and crystal growth for the basic understanding of the electrical 
properties of semiconductor materials and devices. H 

1.1 I SEMICONDUCTOR MATERIALS 
Semiconductors are a group of materials having conductivities between those of met- 
als and insulators. Two general classifications of semiconductors are the elemental 
semiconductor materials, found in group IV of the periodic table, and the compound 
semiconductor materials, most of which are formed from special combinations of 
group I11 and group V elements. Table 1.1 shows a portion of the periodic table in 
which the more common semiconductors are found and Table 1.2 lists a few of the 
semiconductor materials. (Semiconductors can also be formed from combinations of 
group I1 and group VI elements. but in general these will not beconsidered in this text.) 

The elemental materials, those that are composed of single species of atoms, are 
siliconand germanium. Silicon is by far the most common semiconductor used in in- 
tegrated circuits and will be emphasized to a great extent. 
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Table 1.1 1 A portion Table 1.2 1 A list of some semiconductor 
of the periodic table material5 

111 IV V Elemental semiconductors 

B C Si Silicon 
Al Si P Ge Germanium 
Ga Ge As 
In  Sb Compound semiconductors 

AIP Aluminurn phosphide 
AlAs Aluminum arsenide 
Gap Gallium phosphidr 
GaAs Gallium arscnidc 
InP Indium phosphide 

The two-element, orbinur\: compounds suchas gallium arsenide or gallium phos- 
phide are formed by combining one group 111 and one group V element. Gallium 
arsenide is one of the more common of the compound semiconductors. Its good optical 
properties make it useful in optical devices. GaAs is also used in specialized applica- 
tions in which, for example, high speed is required. 

We can also form a three-element, or ternor?: compound semiconductor. An ex- 
ample is A1,Gal_,As, in which the subscript x indicates the fraction of the lower 
atomic number element component. More complex semiconductors can also be 
formed that provide flexibility when choosing material properties. 

1.2 1 TYPES OF SOLIDS 
Amorphous, polycrystalline, and single crystal are the three general types ofsolids. 
Each type is characterized by the size of an ordered region within the material.An or- 
dered region is a spatial volume in which atoms or molecules have a regular geomet- 
ric arrangement or periodicity. Amorphous materials have order only within a few 
atomic or molecular dimensions, while polycrystalline materials have a high degree 

Figure 1.1 I Schematics of three general types of clystals: (a) amorphous, (b) polycrystalline, 
(c) single crystal. 



of order over many atomic or molecular dimensions. These ordered regions. or 
single-crystal regions, vary in size and orientation with respect to one another. The 
single-crystal regions are called grains and are separated from one another by grain 
boundaries. Single-crystal materials, ideally, have a high degree of order, or regular 
geometric periodicity, throughout the entire volume of the material. The advantage 
of a single-crystal material is that. in general, its electrical properties are superior to 
those of a nonsingle-crystal material, since grain boundaries tend to degrade the 
electrical characteristics. Two-dimensional representations of amorphous, polycrys- 
talline, and single-crystal materials are shown in Figure 1 .I. 

1.3 1 SPACE LATTICES 
Our primary concern will be the single crystal with its regular geometric periodicity 
in the atomic arrangement. A representative unit, or group of atoms, is repeated at 
regular intelvals in each of the three dimensions to form the single crystal. The pen- 
odic arrangement of atoms in the crystal is called the lattice. 

1.3.1 Primitive and Unit Cell 

We can represent a particular atomic array by a dot that is called a lattice point. 
Figure 1.2 shows an infinite two-dimensional array of lattice points. The simplest 
means of repeating an atomic array is by translation. Each lattice point in Figure 1.2 
can be translated a distance a ,  in one direction and a distance bl in a second nonco- 
linear direction to generate the two-dimensiunal lattice. A third noncolinear transla- 
tion will produce the three-dimensional lattice. The translation directions need not 
be perpendicular. 

Since the three-dimensional lattice is a periodic repetition of a group of atoms, 
we donot need to consider the entire lattice, but only a fundamental unit that is being 
repeated. A unit cell is a small volume of the crystal that can be used to reproduce the 
entire crystal.Aunit cell is not a unique entity. Figure 1.3 shows several possible unit 
cells in a two-dimensional lattice. 

Figure 1.2 I Two-dimensional Figure 1.3 I Two-dimensional representation of a single-crystal 
represenldtiun of a single-crystal lattice. lattice showing various possible unit cells. 
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Figure 1.4 1 A generalized 
prlmltlve ulllt cell 

The unit ccll A can be translated in directions o: and hz ,  the unit ccll B can be 
translated in directions ai  and Oz. and the entire two-dimensional lattice can be con- 
structed by the translations of either of these unit cells. The unit cells C and D in Fig- 
ure 1.3 can also be used to construct the entire lattice by using the appropriate trans- 
lations. This discussion of two-dimensional unit cells can easily be extended to three 
dimensions to describe a real single-crystal material. 

Aprirnitive cell is the smallest unit cell that can be repeated to form the lattice. 
In many cases, it is more convenient to use a unit cell that is not a primitive cell. Unit 
cells may be chosen that have orthogonal sides, thr example, whereas the sides of a 
primitive cell may be nonorthogonal. 

A generalized three-dimensional unit cell is shown in Figure 1.4. The relation- 
ship between this cell and the lattice is characterized by three vectors Z, 6, and ?, 
which need not be perpendicular and which may or may not be equal in length. Every 
equivalent lattice point in the three-dimensional crystal can be found using the vector 

wherep, q, and s are integers. Since the location of the origin is arbitrary, we will let 
p. q, and J be positive intcgers for simplicity. 

1.3.2 Basic Crystal Structures 

Before we discuss the semiconductor crystal, let us consider three crystal structures 
and determine some of the basic characteristics of these crystals. Figure 1.5 shows 
the simple cubic, body-centered cubic, and face-centered cubic structures. For these 
simple structures, we may choose unit cells such that the general vectors a, 6, and 7 
are perpendicular to each other and the leneths are equal. The simple cubic (sc) struc- 
ture has an atorn located at each corner: thc hody-centered rubic (bcc) structure has 
an additional atom at thc center of thecube; and the fore-cenrer~,dcuhic (fcc) structure 
has additional atoms on each face plane. 

By knowing the crystal structure of a material and its lattice dimensions, we can 
determine several characteristics of the crystal. For example, we can determine the 
volume density of atoms. 



Figure 1.5 I Three lattice types: (a) simple cubic. (b) budy-centered cubic. ( c )  face-centered cuhic. 

Objective I EXAMPLE 1.1 

To find the volume density of atoms in a crystal. 
Consider a single-crystal material that is a hody-centered cuhic with a lattice constant 

o = 5 A = 5 x W 8  cm. A corner arom is shared by eight unit cells which meet at each corner 
so that each comer atom effectively contributes one-eighthof its volume to each unit cell.The 
eight comer atoms then contribute an equivalent of one atom to the unit cell. If we add the body- 
centered atom to the comer atoms, each unit cell contains an equivalent of two atoms. 

rn Solution 
The volume density of atoms is then found as 

2 atrrms 
Density = = 1.6 x 10'' atoms per cm' 

( 5  10-93 

rn Comment 
'Thc volume density of atoms just calculated represents the order of magnitude of density for 
most materials. The actual density is a function of the cryrtal type and crystal structure since 
the packing density-number of atomc per unit cellLdepend5 un crystal struclurr. 

TEST YOUR UNDERSTANDING 1 
El.1 The lattice cilnstant of a face-cmtcred-cubic structure is 4.75A. Determine the vol- 

ume density of atoms. (,-U3 ziO1 x EL'C W Q )  
E1.2 The volume density of atoms for a simple cubic lattice is 3 x 102' c m ~ ' .  Assume that 

the atoms are hard spheres with each atom touching its nearest neighbor. Determine 
the lattice constant and the radium of the atom. (y 19'1 = J 'V ZZ'E = "u s u V )  

1.3.3 Crystal Planes and Miller Indices 

Since real crystals are not infinitely large, they eventually terminate at a surface. 
Semiconductor devices are  fabricated at or near a surface, so the  surface properties 
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may influence the device chnracteristics. We would like to b e  able to describe these 
surfaces in terms of the lattice. Surfaceces, o r  planes through the crystal, can be de- 
scribed by first considering the intercepts of the plane along the if,&, and ? axes used 
to describe the lattice. 

EXAMPLE 1.2 I Objective 

To describe the plane shown in Figure 1.6. (The lattice points in Figure 1.6 are shown along 
the 5 .6 ,  and? axes only.) 

Figure 1.6 1 A representative crystal 
latt~ce plane. 

Solution 
Fmm Equation (1.1). the intercepts of the plane correspond t o p  = 3, y = 2, and r = I. Now 
write the reciprocals of the intercepts, which gives 

Multiply by the lowest common denominator, which in this case is 6. to obtain (2, 3, 6). The 
plane in Figure 1.6 is then referred to as the (236) plane. The integers are referred to as the 
Miller indices. We will refer to a general plane as the (hkl) plane. 

rn Comment 
We can show that the same three Miller indices are obtained for any plane that is parallel to the 
one shown in Figure 1.6. Any parallel plane is entircly equivalent to any other 

Three planes that are commonly considered in a cubic crystal are shown in Fig- 
ure 1.7. The plane in Figure I .7a is parallel to the b and i: axe5 s o  the intercepts are 
given as p = 1, q = m, and s = m. Taking the reciprocal, we obtain the Miller in- 
dices as ( 1 , 0 , 0 ) ,  s o  the plane shown in Figure 1.7a is referred to as the (100) plane. 
Again, any plane parallel to  the one shown in Figure 1.7a and separated by an  integral 
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Figurn 1.7 1 Three latt~ce planes (a) (100) plane. (b) ( I  10) plane. ( c )  ( I  1 1 )  plane. 

number of lattice constants is equivalent and is referred to as the (100) plane. One ad- 
vantage to taking the reciprocal of the intercepts lo obtain the Miller indices is that the 
use of infinity is avoided when describing a plane that is parallel to an axis. If we were 
to describe a plane passing through the origin of our system, we would obtain infin- 
ity as one or more of the Miller indices after taking the reciprocal of the intercepts. 
However, the location of the origin of our system is entirely arbitrary and so, by trans- 
lating the origin to another equivalent lattice point. we can avoid the useof infinity in 
the set of Miller indices. 

For the simple cubic structure, the body-centered cubic. and the face-centered 
cuhic,there isahighdegreeof syrnrnctry. The axes can be rotated by 90" in each of the 
three dimensions and each lattice point can again be described by Equation (1. I )  as 

Each face plane of the cubic structure shown in Figure 1.7a is entirely equivalent. 
These planes are grouped together and are referred to as the ( 100) set of planes. 

We may also consider the planes shown in Figures 1.7b and 1 . 7 ~ .  The intercepts 
of the plane shown in Figure 1.7b are p = 1, q = I ,  and s = cm. The Miller indices 
are found by taking the reciprocal of these intercepts and, as a result, this plane is 
referred to as the (I 10) plane. In a similar way, the plane shown in Figure 1 . 7 ~  is re- 
ferred to as the (I l I) plane. 

One characteristic of a crystal that can be determined is the distance between 
nearest equivalent parallel planes. Another characteristic is the surface concentration 
of atoms, number per square centimeter (#/cml), that are cut by a particular plane. 
Again, a single-crystal semiconductor is not infinitely large and must terminate at 
some surface. The surface density of atoms may be important, for example, in deter- 
mining how another material, such as an insulator, will "fit" on the surface of a semi- 
conductor material. 
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EXAMPLE 1.3 1 Objective 

To calculate the surface density of atoms on a panicular plane in a crystal. 
Consider the body-centered cubic structure and the (110) plane shown in Figure 1.8a. 

Assume the atoms can be represented as hard spheres with the closest atoms touching rach 
other. Assume the lattice constant is a, = 5 A. Figure 1.8b shows how (he atoms are cut by the 
(110) plane. 

The atom at each corner is shared by four similar equivalent lattice planes. so each corner 
atom effectively contributes one-fourth of its area ta this latticc plane as indicated in the fig- 
ure. The four corner atoms then effectively contrihute one atom to this lattice plane. The atom 
in the center is completely enclosed in the lattice plane. There is no other equivalent plane that 
cuts the center atom and the comer atoms, so the entire center atom is included in the numher 
of atoms in the crystal plane. The lattice plane in Figure 1.8b. then. contains two atoms. 

Figurn 1.8 1 (a) The (110) plane m a  body-centeredcuba and (b) the atom\ cut by the 
(110) plane in a body-centered cub,' 

Solution 
We find the surface density by dividing the number of lattice atoms by the surface area, o r  in 
this case 

which is 

Comment 
The aurface density of atoms is a function of the panicular crystal plane in the lattice and gen- 
erally varier from one crystal plane to another 



1 .3 Space Lattices 

TEST YOUR UNDERSTANDING 

E1.3 Determine the distance between nearest (110) planes in a simple cubic lattice with a 
lattice constant of rro = 4.83 A.  (YZVE 'SW) 

E1.4 The lattice constant of a face-centered-cubic structure is 4.75 A. Calculate the surface 
density of atoms for (a) a (100) plane and (b) a ( I  10) plane. 
[ , - ~ 3  x LZ'9 (9) '2-"3 +,Ol X 98'8 'SUVI 

In addition to describing crystal planes in a lattice, we may want to describe n par- 
ticulardirection in the crystal. The direction can be expressed as a set of three integers 
which are the components of a vector i n  that direction. For cxample, the body diago- 
nal in a simple cubic lattice is composed of vector components I. 1 ,  I. The body diag- 
onal is then described as the [I I I ]  direction. The brackets are used to designate direc- 
tion as distinct from the parentheses used for the crystal planes. The three basic 
directions and the associated crystal planes for the simple cubic structure are shown in 
Figure 1.9. Note that in the simple cubic lattices, the [hkll direction is pcrpendicular to 
the (hkl) plane. This perpendicularity may not be true in noncubic lattices. 

13.4 The Diamond Structure 

As already stated, silicon is the most common semiconductor material. Silicon is re- 
ferred to as a group IV element and has a diamond crystal structure. Germanium is 
also a group 1V elanent and has the same diamond structure. A unit cell of the dia- 
mond structure, shown in Figure 1.10, is more complicated than the simple cubic 
structures that we have considered up to this point. 

We may begin to understand the diamond lattice by considering the tetrilhedral 
structure shown in Figure 1 . 1  I. This structure is basically a body-centered cubic with 

Figure 1.9 1 Three lattice directions and planes: (a) (100) plane and 11001 directiun, (b) ( I  10) plane and I1  101 direction. 
(c) ( I  ll) plane and [Il l  I direclion. 



CHAPTER i The Crystal Structure of Solids 

Figure 1.10 1 Thc diamond structure 

Figure 1.11 I The tetrahedral 
structure uf closest neighbors 
in the diamond latticc. 

Figure 1.12 I Portions of the diarnondlattice: (a) bottom half and (b) top half 

four of the comer atoms missing. Every atom in the tetrahedral structure has four 
nearest neighbors and it is this structure which is the basic building block of the dia- 
mond lattice. 

There are several ways to visualize the diamond structure. One way to gain a fur- 
ther understanding of the diamond lattice is by considering Figure l .  12. Figure l .  12a 
shows two body-centercd cubic, or tetrahedral, structures diagonally adjacent to each 
other. The shaded circles represent atoms in the lattice that are generated when the 
structure is translated to the right or left, one lattice constant, a. Figure 1.12b repre- 
sents the top half of the diamond structure. The top half again consists of two tetra- 
hedral structures joined diagonally, but which are at 90" with respect to the bottom- 
half diagonal. An important characteristic of the diamond lattice is that any atom 
within the diamond structure will have four nearest neighboring atoms. We will note 
this characteristic again in our discussion of atomic bonding in the next section. 



1.4 Atomic Bonding 11 

Figure 1.14 1 The tetrahedral 
3tructure of clo~e\t nerghbors in 

Figure 1.13 1 The zincblende (sphalerite) lattice of &As. the rincblende lattice 

The diamond structure refers to the particular lattice in which all atoms are of the 
same species, such as silicon or germanium. The zinchlende (sphalerite) structure 
differs from the diamond structure only in that there are two different types of atoms 
in the lattice. Compound semiconductors, such as gallium arsenide, have the zinc- 
hlende structure shown in Figure 1.13. The important feature of both the diamond 
and the zincblende structures is that the atoms art: joined together to form a tetrahe- 
dron. Figure 1.14 shows the basic tetrahedral structure of GaAs in which each Ga 
atom has four nearest As neighbors and each As atom has four nearest Ga neighbors. 
This figure also begins to show the interpenetration of two sublattices that can be used 
to generate the diamond or zincblende lattice. 

TEST YOUR UNDERSTANDING 

E1.5 The lattice constant of silicon is 5.43 A. Calculate the volume density of silicon 
atoms. ((_U13 izO1 X 5 'SUV) 

1.4 1 ATOMIC BONDING 
We have been considering various single-crystal structures. The question arises as to 
why one particular crystal structure is favored over another for a particular assembly 
of atoms. Afundamental law of nature is that the total energy of a system in thermal 
equilibrium tends to reach a minimum value. The interaction that occurs between 
atoms to form a solid and to reach the minimum total energy depends on the type of 
atom or atoms involved. The type of bond, or interaction, between atoms, then, de- 
pends on the particular atom or atoms in the crystal. If there is not a strong bond be- 
tween atoms, they will not "stick together" to create a solid. 
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The interaction between atoms can he described by quantum mechanics. Al- 
though an introduction to quantum mechanics is presented in the next chapter, the 
quantum-mechanical description of the atomic bonding interaction is still beyond the 
scope of this text. We can nevertheless obtain a qualitative understanding of how v a r ~  
ious atoms interact by considering the valence, or outermost, electrons of an atom. 

The atoms at the two extremes of the periodic table (excepting the inert ele- 
ments) tend to lose or gain valence electrons, thus forming ions. These ions then es- 
sentially have complete outer energy shells. The elements in group 1 of the periodic 
table tend to lose their one electron and become positively charged? while the ele- 
ments in group V11 tend to gain an electron and become negatively charged. These 
oppositely charged ions then experience a coulomb attraction and form a bond re- 
ferred to as an ionic bond. Tf the ions were to get too close, a repulsive force would 
become dominant, so an equilibrium distance results between these two ions. In a 
crystal, negatively chargedions tend to be surrounded by positively charged ions and 
positively charged ions tend to he surrounded by negatively charged ions, so a peri- 
odic array of the atoms is formed to create the lattice. A classic example of ionic 
bonding is sodium chloride. 

The interaction of atoms tends to form closed valence shells such as we see in 
ionic bonding. Another atomic bond that tends to achieve closed-valence energy 
shells is covalent bondiq,  an example of which is found in the hydrogen molecule. 
A hydrogen atom has one electron and needs one more electron to complete the low- 
est energy shell. A schematic of two noninteracting hydrogen atoms, and the hydro- 
gen molecule with the covalent bonding, are shown in Figure 1.15. Covalent hond- 
ing results in electrons being shared between atoms, so that in effect the valence 
energy shell of each atom is full. 

Atoms in group 1V of the periodic table, such as silicon and germanium, also 
tend to form covalent honds. Each of these elements has four valence electrons and 
needs four more electrons to complete the valence energy shell. If a silicon atom, for 
example, has four nearest neighbors, with each neighbor atom contributing one va- 
lence electron to be shared. then the center atom will in effect have eight eleclrons in 
its outer shell. Figure 1.16a schematically shows live noninteracting silicon atoms 
with the four valence electrons around each atom. A two-dimensional representation 

Figure 1.15 I Representation of 
(a) hydrogen valence electrons (a) (b) 

and (b) covalent bonding in a Figure 1.16 1 Representation of (a) silicon valence 
hydrogen molecule. electrons and (b) covalent bonding in the silicon crystal. 
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of the covalent bonding in silicon is shown in Figure I . l6b.  The center atom has 
eight shared valence electrons. 

A significant difference between the covalent bonding of hydrogen and of sili- 
con is that, when the hydrogen molecule is formed, it has no additional electrons to 
form additional covalent bonds, while the outer silicon atoms always have valence 
electrons available for additional covalent bonding. The silicon array may then be 
formed into an infinite crystal, with each silicon atom having four nearest neighbors 
and eight shared electrons. The four nearest neighbor5 in silicon forming the covalent 
bond correspond to the tetrahedral structure and the diamond lattice, which were 
shown in Figures 1.1 1 and 1.10, respectively. Atomic bonding and crystal structure 
are obviously directly related. 

The third major atomic bonding scheme is referred to as metallic honding. 
Group I elements have one valence cleclron. If two sodium atoms ( Z  = 1 I), for ex- 
ample. are brought into close proximity, the valence electrons interact in a way sim- 
ilar to that in covalent bonding. When a third sodium atom is brought into close prox- 
imity with the first two, the valence electrons can also interact and continue to form 
a bond. Solid sodium has a body-centered cubic structure, so each atom has eight 
nearest neighbors with each atom sharing many valence electrons. We may think of 
thepositive metallic ions as being surrounded by a sea of negative electrons, the solid 
being held together by the electrostatic forces. This description gives a qualitative 
picture of the metallic bond. 

Afounh type of atomic bond. called the W I ~  der Waals bond, is the weakest of 
the chemical bonds. A hydrogen fluoride (HF) molecule, for example, is formed by 
an ionic bond. The effective center of the positive charge of the molecule is not the 
same as the effective center of the negative charge. This nonsymmetry in the charge 
distribution results in a small electric dipole that can interact with the dipoles of other 
HF molecules. With these weak interactions, solids formed by the Van der Wads 
bonds have a relatively low melting temperature-in fact, most of these materials are 
in gaseous form at room temperature. 

*1.5 1 IMPERFECTIONS AND IMPURITIES 
IN SOLIDS 

Up to this point, we have been considering an ideal single-crystal structure. In areal 
crystal, the lattice is not perfect, but contains imperfections or defects; that is, the per- 
fect geometric periodicity is disrupted in some manner. Imperfections tend to alter thc 
electrical properties of a material and, in some cases, electrical parameters can be 
dominated by these defects or impurities. 

1.5.1 Imperfections in Solids 

One type of imperfection that all crystals have in common is atomic thermal vihra- 
tion. Aperfect single crystal contains atoms at particular lattice sites, the atoms sep- 
arated from each other by a distance we have assumed to be constant. The atoms in a 

- 
*Indicates sections that can bc skipped without loss of continuity. 
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Figure 1.17 I Two-dimensional representation of a single-crystal lattice showing (a) a vacancy defect 
and (b) an inlentitial deiect. 

crystal, however, have a certain thermal energy, which is a function of temperature. 
The thermal enerev causes the atoms to vibrate in a random manner about an euui- -, 
librium lattice point. This random thermal motion causes the distance between atoms 
to randomly fluctuate, slightly disrupting the perfect geometric arrangement ofatoms. 

~ ~ 

This imperfection, called lartice vibrations, affects some electrical parameters, as we 
will see later in our discussion of semiconductor material characteristics. 

Another type of defect is called apoint dcfecr. There are several of this type that 
we need to consider. Agdin, in an ideal single-crystal lattice, the atoms are arranged 
in a perfect periodic arrangement. However, in a real crystal, an atom may be missing 
from a particular lattice site. This defect is referred to as a vacuncy: it is schematically 
shown in Figure 1.17a. In another situation, an atom may be located between lattice 
sites. This defect is referred to as an inter~titiul and is schematically shown in Fig- 
ure 1.17b. In the case of vacancy and interstitial defects, not only is the perfect geo- 
metric arrangement of atoms broken, but also the ideal chemical bonding between 
atoms is disrupted, which tends to change the electrical properties of the material. A 
vacancy and interstitial may be in close enough proximity to exhibit an interaction 
between the two point defects. This vacancy-interstitial defect, also known as a 
Frenkel defect, produces different effects than the simple vacancy or interstitial. 

The point defects involve single atoms or single-atom locations. In forming 
single-crystal materials, more complex defects may occur. A line defect. for example, 
occurs when an entire row of atoms is missing from its no~mal lattice site. This de- 
fect is referred to as a line disiucation and is shown in Figure 1.18. As with a point 
defect, a line dislocation disrupts both the normal geometric periodicity of the lattice 
and the ideal atomic bonds in the crystal. This dislocation can also alter the electrical 
properties of the material, usually in a more unpredictable manner than the simple 
point defects. 

Other complex dislocations can also occur in it crystal lattice. However. this in- 
troductory discussion is intended only to present a few of the basic types of defect, 
and to show that a re31 crystal is not necessarily a perfect lattice structure. The effect 
of these imperfections on the electrical properties of a semiconductor will be consid- 
ered in later chapters. 
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Figure 1.18 I A two- 
dimensional representation 
of a line di~location. 

Figurn 1.19 1 Two-dimensional representation of a single-crystal lattice ~howing (a) a substitutional irnpu"ty 
and (b) an intersitital impurity. 

1.5.2 Impurities in Solids 

Foreign atoms, or impurity atoms, may be present in a crystal lattice. Impurity atoms 
may be located at normal lattice sites, in which case they are called .sub,sritutional im- 
purities. Impurity atoms may also be located between normal sites, in which case 
they are called interstitial impurities. Both these impurities are lattice defects and are 
schematically shown in Figure 1.19. Some impurities, such as oxygen in silicon, tend 
to he essentially inert; however, other impurities, such as gold or phosphorus in sili- 
con, can drastically alter the electrical properties of the material. 

In Chapter 4 we will see that, by adding controlled amounts of particular impu- 
rity atoms, the electrical characteristics of a semiconductor material can be favorably 
altered. The technique of adding impurity atoms to a semiconductor material in order 
to change its conductivity is called duping. There are two general methods of doping: 
impurity diffusion and ion implantation. 

The actual diffusion process depends to some extent on the material but, in gen- 
eral, impurity diffusion occurs when a semiconductor crystal is placed in a high- 
temperature (= 1000•‹C) gaseous atmosphere containing the desired impurity atom. 
At this high temperature, many of the crystal atoms can randomly move in and out of 
their single-crystal lattice sites. Vacancies may he created by this random motion so 
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that impurity atoms can move through the lattice by hopping from one vacancy to an- 
other. Impurity diffusion is the process by which impurity particles move from a re- 
gion of high concentration near the surface, to a region of lower concentration within 
the crystal. When the temperature decreases, the impurity atoms become permanently 
frozen into the substitutional lattice sites. Diffusion of various impurities into selected 
regions of a semiconductor allows us to fabricate complex electronic circuits in a 
single semiconductor crystal. 

Ion implantation generally takes place at a lower temperature than diffusion. A 
beam of impurity ions is accelerated to kinetic energies in the range of 50 keV or 
greater and then directed to the surface of the semiconductor. The high-energy impu- 
rity ions enter the crystal and come to rest at some average depth from the surface. 
One advantage of ion implantation is that controlled numbers of impurity atoms can 
be introduced into specific regions of the crystal. A disadvantage of this technique is 
that the incident impurity atoms collide with the crystal atoms. causing lattice- 
displacement damage. However, most of the lattice damage can he removed by ther- 
mal annealing, in which the temperature of the crystal is raised for a short time. Ther- 
mal annealing is a required step after implantation. 

*1.6 1 GROWTH OF SEMICONDUCTOR 
MATERIALS 

The success in fabricating very large scale integrated (VLSI) circuits is a result, to a 
large extent, of the development of and improvement in the formation or growth of 
pure single-crystal semiconductor materials. Semiconductors are some of the purest 
materials. Silicon, for example, has concentrations of most impurities of less than 
1 part in 10 billion. The high purity requirement means that extreme care is necessary 
in the growth and the treatment of the material at each step of the fabrication process. 
The mechanics and kinetics of crystal growth are extremely complex and will be de- 
scribed in only very general terms in this text. However, a general knowledge of the 
growth techniques and terminology is valuable. 

1.6.1 Growth from a Melt 

A common technique for growing single-crystal materials is called the Czochralski 
method. In this technique, a small piece of single-crystal material, known as a seed, 
is brought into contact with the surface of the same material in liquid phase, and then 
slowly pulled from the melt. As the seed is slowly pulled, solidification occurs along 
the pkane between the solid-liquid interface. Usually the crystal is also rot.dted slowly 
as it is being pulled, to provide a slight stirring action to the melt, resulting in a more 
uniform temperature. Controlled amounts of specific impurity atoms, such as boron 
or phosphorus, may be added to the melt so that the grown semiconductor clystal is 
intentionally doped with the impurity atom. Figure 1.20 shows a schematic of the 
Czochralski growth process and a silicon ingot or boule grown by [his process. 

*Indicates sections that can be sk'ipped without loss of continuity 



1 .8 Growth of Semiconductor Mater~als 

Figure 1.20 1 (a) Model of a cry~tal puller and (b) photograph of a silicon wafer with an 
may of integrated circuits. The circuits are tertcd on the wafer then sawed apan into chips 
that are mounted into packages. (Photo courtrsy of Intel Corporation.) 
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Some impurities may be present in the ingot that are undesirable. Zone refining 
is a common technique for purifying material. A high-temperature coil. or  r-f induc- 
tion coil, is slowly passed along the length of the boule. The temperature induced by 
the coil is high enough so that a thin layer of liquid is formed. At the solid-liquid in- 
terface, there is a distribution of impurities between the two phases. The parameter 
that describes this distribution is called the segregation coeflcient: the ratio of the 
concentration of impurities in the solid to the concentration in the liquid. If the seg- 
regation coefficient is 0.1, for example, the concenlration of impurities in the liquid 
is a factor of 10 greater than that in the solid. As thc liquid zone moves through the 
material. the impurities are driven along with the liquid. After several passes of the 
r-f coil, most impurities are at the end of the bar, which can then be cut off. The mov- 
ing molten zone, or the zone-refining technique, can result i n  considerable purification. 

After the semiconductor is grown, the boule is mechanically trimmed to the 
proper diameter and a Rat is ground over the entire length of the boule to denote the 
crystal orientation. The Rat is perpendicular to the 11 101 direction or indicates the (I 10) 
plane. (See Figure 1.20b.) This then allows the individual chips to be fabricated along 
given crystal planes so that thechips can he sawed apartmore easily. The boule is then 
sliced into wafers. The wafer must he thick enough to mechanically support itself. A 
mechanical two-sided lapping operation produces a Rat wafer of uniform thickness. 
Since the lapping procedure can leave a surface damaged andcontaminated by the me- 
chanical operation, the surface must be removed by chemical etching. The final step is 
polishing. This provides a smooth surface on which devices may be fabricated or fur- 
ther growth processes may be carried out. This final semiconductor wafer is called the 
substrate material. 

1.6.2 Epitaxial Growth 

A common and versatile growth technique that is used extensively in device and in- 
tegrated circuit fabrication is epitaxial growth. Epitaxial growth is a process whereby 
a thin, single-crystal layer of material is grown on the surface of a single-crystal sub- 
strate. In the epitaxial process, the single-crystal substrate acts as the seed, although 
the process takes place far below the melting temperature. When an epitaxial layer is 
grown on a substrate of the same material, the process is termed homoepitaxy. Grow- 
ing silicon on a silicon substrate is one example of a homoepitaxy process. At pre- 
sent, a great deal of work is being done with heteroepitaxy. In a heteroepitaxy 
process, although the substrate and epitaxial materials are not the same, the two crys- 
tal structures should be very similar if single-crystal growth is to he obtained and if 
a large number of defects are to be avoided at the epitaxial-substrate interface. 
Growing epitaxial layers of the ternary alloy AlGaAs on a GaAs substrate is one ex- 
ample of a heteroepitaxy process. 

One epitaxial growth technique that has been used extensively is called chemi- 
cal vapor-phase deposition (CVD). Silicon epitaxial layers, for example, are grown 
on silicon substrates by the controlled deposition of silicon atoms onto the surface 
from a chemical vapor containing silicon. In one method, silicon tetrachloride reacts 
with hydrogen at the aurface of a hcated substrate. The silicon atoms are released in 



the reaction and can be deposited onto the substrate, while the other chemical reac- 
tant, HCI, is in gaseous form and is swept out of the reactor. A sharp demarcation be- 
tween the impurity doping in the substrate and in the epitaxial layer can be achieved 
using the CVD process. This technique allows great flexibility in the fabrication of 
semiconductor devices. 

Liquid-phase epitaq is another epitaxial growth technique. A compound of the 
semiconductor with another element may have a melting temperature lower than that 
of the semiconductor itself. The semiconductor substrate is held in the liquid com- 
pound and, since the temperature of the melt is lower than the melting temperature of 
the substrate, the substrate does not melt. As  the solution is slowly cooled, a single- 
clystal semiconductor layer grows on the seed crystal. This technique, which occurs 
at a lower temperature than the Czochralski method, is useful in growing group Ill-V 
compound semiconductors. 

A versatile technique for growing epitaxial layers is the molerular heam epi taq  
(MBE) process. Asubstrate is held in vacuum at a temperature normally in the range 
of 400 to 800"C, a relatively low temperature compared with many semiconductor- 
processing steps. Semiconductor and dopant atoms are then evaporated onto the sur- 
face of the substrate. In this technique, the doping can he precisely controlled result- 
ing in vety complex doping profiles. Complex ternary compounds, such as AIGaAs, 
can be grown on substrates, such as GaAs, where ahrupt changes in the crystal com- 
position are desired. Many layers of various types of epitaxial compositions can be 
grown on a substrate in this manner. These structures are extremely beneficial in op- 
tical devices such as laser diodes. 

1.7 1 SUMMARY 
A few of the most common semiconductor cnaterials were listed. Silicon is the most 
common semiconductor material. 
The properties of semiconductors and other materials are determined to a large extent 
by the single-crystal lattice structure. The unit cell is a small volume of the crystal that 
is used to reproduce the entirc crystal. Three basic unit cells are the simplc cuhic. hody- 
centered cubic. and face-centered cubic. 
Silicon has the diamond crystal structure. Atoms are formed in a tetrahedral configura- 
tion with four nearest neighbor atoms. The binary semiconductors have a zincblrnde 
lattice, that is hasically the came as the diamond lattice. 
Miller indices are used to describe planes in a crystal lattice. These planes may he used 
to describe the surface of a semiconductor material. The Miller indices are also used to 
describe directions in a crystal. 

W Imperfections do exist in semiconductor materials. A few of thcse imperfections are 
vacancies, substitutiunal impuritics, and interstitial impurities. S m l l  amounts of con- 
trolled substitutional impurities can favorably alter semiconductor properties as we will 
see in later chapters. 

W A brief description of semiconductor growlh methods was givcn. Bulk growth produces 
the starting semiconductar material or suhctrate. Epitaxial growth can be used to control 
the surface properties of a semiconductor Most semiconductor devices are fabricated 
in the epitaxial layer. 
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GLOSSARY OF IMPORTANT TERMS 
binary semiconductor A lwo-element compound semiconductor, such as gallium arsenide 

(GaAs). 

covalent bonding The bonding between atoms in which valence electrons are shared. 

diamond lattice The atomic crystal structure of silicon, for example, in which each atom 
has four nearest neighhors in a tetrahedral configuration. 

doping The process of adding specific types of atoms lo a semiconduclor to favomhly alter 
the electrical characteristics. 

elemental semiconductor A semiconductor composed of a single species af atom, such as 
silicon or germanium. 

epitaxial layer A thin, single-crystal layer of material formed on the surface of a substrate. 

ion implantation One particular process of doping a semiconductor. 

lattice The periodic arrangement of atoms in a crystal. 

Miller indices The set of integers used to descrihc a crystal plane. 

primitive cell The smallest unit cell that can be repeated to form a lattice. 

substrate A semiconductor wafer or other material used as the starling material fnr further 
semiconductor processing. such as epitaxial growth or diffusion. 

ternary semiconductor A threr-element compound semiconductor. such as aluminum gal- 
lium arsenide (AIGaAs). 

unit cell A small volume o f a  crystal that can he used to reproduce the entire crystal. 

zincblende lattice A lattice structure identical to the diamond lattice except that there arc 
two types of atoms instead of one. 

CHECKPOINT 
After studying this chapter, the reader should hare the ability to: 

Determine the volume density of atoms for various lattice structures. 
Determine the hlillzr indices of a crystal-lattice plane. 
Sketch a lattice plane riven the Miller indices. 
Determine the surface density of atoms on a given crystal-latlice plane. 
Understand and describe various defects in a single-crystal lattice. 

REVIEW QUESTIONS 
1. List two elemental semiconductor materials and two compound iemiconductor 

materials. 

2. Sketch three lattice structures: (u)  simple cubic, (h)  body-centered cubic, and 
( c )  face-centered cuhic. 

3. Describe the procedure for finding the volumc density af atoms in acryslal. 

4. Describe the procedure far obtaining the Miller indices that describe a plane in a crystal. 

5. What is meant by a substitutional impurity in a crystal? What is meant by an intcrstilial 
impurity'? 



Problems 

PROBLEMS 

Section 1.3 Space Lattices 

Determine the number of atoms per unit cell in a (ti) lace-centcred cubic, 
(b) body-centered cubic, and (c) diamond lattice. 

(a)  The lattice constant of GaAs is 5.65 A. Determine the number o l  Ga atoms 
and As atoms per cm3. (h)  Determine the vulume density of germanium atoms in a 
germanium semiconductor The lattice constant of gcrmaniurn i, 5.65 A. 
Assume that each atom is a hard sphere with the surface of each atom in contact with 
the surface of its nearest neighbor, Dctcrminr the percentage of total unit cell volume 
that is occupied in ( a )  a simplc cubic lattice, (b) a face-centered cubic lattice, 
(c) a body-centered cubic lattice, and (d) a diamond lattice. 

Amaterial, with a volume of I cm', is cornpu5edof an fcc lattice with alattice 
constant of 2.5 mm. The "atoms" in this material are actually coffee beans. Assumc 
the coffee beans are hard spheres with each bean touching its nearest neighbor. 
Determine the volume o l  coffee after the coffee beans have been ground. (Assume 
100 percent packing density of the ground coffee.) 

If the lattice constant of silicon is 5.41 A, calculate (a) the distance from the center of 
one silicon atom to the center of its nearest neighbor, (h)  the number density of silicon 
atoms (#per cm'), and ( c )  the mass density (grams per cm') of silicon. 

A crystal is composed of two dements, A and B. The basic crystal structure is a body- 
centered cubic with clements A at each of the corners and element B in thc center. The 
effective radius of element A is 1.02 A. Acsume the elements arc hard spheres with the 
surface of each A-type atom in contact with the surface of its nearest A-typc neighhor. 
Calculate (a) the maximum radius of the B-type atom that will fit into t h i ~  structure, 
and (b) the volume density (#/cm3) of both the A-type atoms and the B-type atoms. 

The crystal structure of sodium chloride (NaCI) is a simple cubic with the Na and CI 
atoms alternating positions. Each Na atom is then surrounded by \ix CI atoms and 
likewise each C1 atom is surrounded by six Na atoms. (a) Sketch the atoms in a (100) 
plane. (b) Assume the atoms arc hard spheres with nearest neighbors touching. The 
effective radius of Na is I .0 A and the effective radius of CI is 1.8 A. Determine the 
lattice constant. (c) Calculate the volume dencity of Na and C1 atoms. (d) Calculate 
the mass density of NaCL. 

@)A material is composed uf two typcs of alums. Atom A has an effective radius of 
2.2 Aand atom B has an effective radius of 1.8 A. The lattice is a hcc with atoms A at 
the comers and atom B in the cmter. Determine the latticc constant and thc volume den- 
sitiesofAatoms and B atoms. (b) Repeat part (a)  with atoms B at thecomers and atom 
Ain the center (c )  What comparison can be madc of the materials in parts (a )  and (h)? 
Consider the materials described in P~ohlern 1.8 in parts (a) and (b). For each case, 
calculate the surface density of A atoms and B atoms in the (1 10) plane. What corn 
parison can be made of the two materials? 

(a) The crystal structure of a particular material consists of a single atom in the cmter 
of a cube. The lattice constant is a, and the diameter u l  the atom is no. Determine the 
volume density of atoms and the sutiace densily of atoms in the (1 10) plane. 
(b) Compare the results of part (a) to the results for the case of the simple cuhic struc- 
ture shown in Figure 1.5a with the same lattice constant. 
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(a) 

Figure 1.21 1 Figure for Problem 1.12. 

Consider ;I three-dim,-nsional cuhic lattice with a lattice constant t-qtlal to a. ( a )  
Sketch the followingplanes: ( i )  (LOO), (ii) (110) (iii) (310) and (iv) (230). (b) Sketch 
the following directions: (i) [loo], (ii) 11 101. (iii) 13101, and (iv) 12101. 

For a simple cuhic lattice, determine the Miller indices for the planes shown in 
Figure 1.21. 

The lattice constant of a simple cubic cell is 5.63 A. Calculate the distance between 
the nearestparallel (a) (loo), (h) (110). and (c) (111) planes. 

The lauice constant of a single crystal is 4.50 A. Calculate the surface density of 
atoms (# per cm') on the following planes: (i) (100), (ii) (1 10). (iii) (1 11) for each of 
the following lattice structures: (a) simple cubic, (hi hody-centered cubic, and 
(c) face-centered cubic. 

Determine the surface density of atoms for ~ilicon on the (a) (100) plane, (h )  (110) 
plane, and ( c )  ( I  l I) plane. 

Consider a face-centered cubic lattice. Assume the atoms are hard spheres with the 
surfaces of the nearest neighbors touching. Assume the radius of the atom is 2.25 A. 
((I) Calculate thc volume density or atoms in the crystal. (h) Calculate the distance 
between nearest (1 10) planes. (c) Calculate the surface density of atoms on the 
(I 10) plane. 

Section 1.4 Atomic Bonding 

1.17 Calculate the drnc~tv of valence electrons m slllcon 

1.18 The structure of GaAs is the rincblende lattice. The lattice constant is 5.65 A. 
Calculate the density of valence electrons in GaAs. 



Section 1.5 Imperfections and Impurities in Solids 

1.19 (a) If 2 x 1016 boron atoms per cm'are added to silicon as a substitutional impurity, 
determine what percentage of the silicon atoms are displaced in the single crystal 
lattice. (b) Repeat pall (u) for 10" boron atoms per cm'. 

1.20 (a) Phosphorus atoms, at a concentration of 5 x loi6  cm-', are added to a pure 
sample of silicon. Assume the phosphorus atoms are distributed homogeneously 
throughout the silicon. What is the fraction by weight of phosphorus'? ib) If boron 
atoms, at a concentration of 1018 ~ m - ~ ,  are added to the material in part 
(a), determine the fraction by weight of boron. 

1.21 If 2 x 10'' gold atoms per cm3 are added to silicon as a substitutional impurity and 
are distributed uniformly throughout the semiconductor, determine the distance 
between gold atoms in terms of the silicon lattice constant. (Assume the gold atoms 
are distributed in a rectangular or cubic array.) 
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C H A P  

Introduction to Quantum 

P R E V I E W  

T he goal of this text is to help readers understand the operation and character- 
istics of semiconductor devices. Ideally, we would like to begin discussing 
these devices immediately. However, in order to understand the current- 

voltage characteristics, we need some knowledge of the electron behavior in a crys- 
tal when the electron is subjected to various potential functions. 

The motion of large objects, such as planets and satellites, can be predicted to a 
high degree of accuracy using classical theoretical physics based on Newton's laws 
of motion. But certain experimental results, involving electrons and high-frequency 
electromagnetic waves, appear to he inconsistent with classical physics. However, 
these experimental results can be predicted by the principles of quantum mechanics. 
The quantum mechanical wave theory is the basis for the theory of semiconductor 
physics. 

We are ultimately interested in semiconductor materials whose electrical prop- 
erties arc directly related to the behavior of electrons in the crystal lattice. The be- 
havior and characteristics of these electrons can be described by the formulation of 
quantum mechanics called wave mechanics. The essential elements of this wave me- 
chanics, using Schrodinger's wavc equation, are presented in this chapter. 

The goal of this chapter is to provide a brief introduction to quantum mechanics 
so that readers gain an understanding of and become comfortable with the analysis 
techniques. This introductory material forms the basis of semiconductor physics.. 



2.1 Principles of Quantum Mechanics 

2.1 1 PRINCIPLES OF QUANTUM MECHANICS 
Before we delve into the mathematics of quantum mechanics. there are three principles 
we need to consider: the principle of energy quanta, the wave-puticle duality princi- 
ple, and the uncertainty principle. 

2.1.1 Energy Quanta 

One experiment that demonstrates an inconsistency between experimental results 
and the classical theory of light is called the photoelectric effect. If monochromatic 
light is incident on a clean surface of a material, then under certain conditions, elec- 
trons (photoelectrons) are emitted from the surface. According to classical physics. 
if the intensity of the light is large enough, the work function of the material will be 
overcome and an electron will be emitted from the surface independent of the inci- 
dent frequency. This result is not observed. The observed effect is that, at a constant 
incident intensity, the maximum kinetic energy of the photoelectron varies linearly 
with frequency with a limiting frequency u = vil. below which no photoelectron is 
produced. This result is shown in Figure 2.1. If the incident intensity varies at a con- 
stant frequency, the rate of photoelectron emission changes, but the maximum ki- 
netic energy remains the same. 

Planckpostulated in I900 that thermal radiation is emitted from a heated sur- 
face in discrete packets of energy called qunntu. The energy of these quanta is 
given by E = hv,  where v is the frequency of the radiation and h is a constant now 
known as Planck's constant ( h  = 6.625 x l0-j' J-s). Then in 1905. Einstein inter- 
preted the photoelectric results by suggesting that the energy in a light wave is also 
contained in discrete packets or bundles. The particle-like packet of energy is 
called aphoton, whose energy is also given by E = hv. A photon with sufficient 
energy, then, can knock an electron from the sul-face of the material. The minimum 
energy required to remove an electron is called the work function of the material 

Incident Photoelectron 
monoehramatic k inaic  

Incident 
monoehramatic 

, ;/ 
kinaic  

light energy = T 

d .- 

E 
Material i "  , 

Frequency, u 
,' 
% Frequency, u 

## 

I 
(a) (b) 

Figurn 2.1 I (a) The photoelectnc effect and ( b )  the rnan~rnum hnet~c  energy of 
the photoelectron a\ a tunct~on of ~nc~dent frequency 
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and any excess photon energy goes into the kinetic energy of the photoelectron. 
This result was confirmed experimentally as demonsttated in Figure 2.1. The pho- 
toelectric effect shows the discrete nature of the photon and demonstrates the 
particle-like behavior of the photon. 

The maximum kinetic energy of the photoelectron can be written as 

where hu is the incident photon energy and huo is the minimum energy, of work 
function, required to remove an electron from the surface. 

EXAMPLE 2.1 I Objective 

To calculate the photon energy corresponding to a particular wavelength. 
Consider an x-ray with a wavelength of A = 0.708 x lo-' cm. 

Solution 
The energy is 

Th15 value ot energy may be gnen in the more common unlt of electron-volt (see Appendlx F) 
We have 

Comment 
The reciprocal relation between photon energy and wavelength is demonstrated: A large m- 
ergy corresponds to a short wavelength. 

2.1.2 Wave-Particle Duality 

We have seen in the last section that light waves, in the photoelectric effect, behave 
as if they are particles. The particle-like behavior of electromagnetic waves was also 
instrumental in the explanation of the Compton effect. In this experiment, an x-ray 
beam was incident on a solid. A portion of the x-ray beam was deflected and the fre- 
quency of the deflected wave had shifted compared to the incident wave. The ob- 
served change in frequency and the deflected angle corresponded exactly to the ex- 
pected results of a "billiard ball" collision between an x-ray quanta, or photon, and 
an electron in which hoth energy and momentum are conserved. 

In 1924. de Broglie postulated the existence of matter waves. He suggested that 
since waves exhibit particle-like behavior, then panicles should be expected to 
show wave-like properties. The hypothesis of de Broglie was the existence of a 



2.1 Principles of Quantum Mechanics 

wave-parficle dualiiyprinciple. The momentum of a photon is &wen by 

where A is the wavelength of the l~gh t  wave Then, de Broghe hypotheslred that the 
u,avelength of a prutlcle can be expressed as 

wherep is the momentum of the particle and A is known as the de Broglie wuvelen~th 
of the matter wave. 

The wave nature of electrons has been tested in several ways. In one experiment 
by Davisson and Germer in 1927, electrons from a heated filament were accelerated 
at normal incidence onto a single clystal of nickel. A detector measured the scattered 
electrons as a function of angle. Figure 2.2 shows the experimental setup and 
Figure 2.3 shows the results. The existence of a peak in the density of scattered elec- 
trons can be explained as a constructive interference of waves scattered by the peri- 
odic atoms in the planes of the nickel crystal. The angular distribution is very similar 
to an interference pattern produced by light diffracted from a grating. 

In order to gain some appreciation of the frequencies and wavelengths involved 
in  the wave-particle duality principle. Figure 2.4 shows the electromagnetic 
frequency specuum. We see that a wavelength of 72.7 A obtained in the next exam- 
ple is in the ultraviolet range. Typically, we will be considering wavelengths in the 

Azimuthal I 

Scattered 
electrons / 
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Galvanometer 

Figure 2.2 I Expenmental arrangement of the Davlsbon- 
Genner experlmenr 
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Figure 2.3 1 Scattered electron flux a? a 
tunctlon of Tcattenng angle for the 
Davisson-Germer experiment 



28 CHAPTER 2 Introduction to Quantum Mechanics 

l THr 1 GHL l MHz 1 k H 7  1 H I  Frequency (Hz) 

n 2  10" 10" lo l=  I nu lo6 10' 1 

Figure 2.4 1 The electromagnetic frequency spectrum 

ultraviolet and visible range. These wavelengths are very short compared to the usual 
radio spectrum range. 

EXAMPLE 2.2 I Objective 

To calculate the de Broglie wavelength of a panicle. 
Concidcr an electron traveling at a velocity of 1U7cm/sec = LOi m/s. 

rn Solution 
The momentum is given by 

Thcn. the dr Broghe wavelength 1s 

rn Comment 
This cidculatian shows the order of magnitude of the de Broglie wavelength for a "typical" 
electron. 

In some cases electromagnetic wavcs behave as if they are particles (photons) 
and sometimes particles behave as if they are waves. This wave-particle duality 
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principle of quantum mechanics applies primarily to small particles such as electrons, 
but it has also been shown to apply to protons and neutrons. For very large particles, 
we can show that the relevant equatjons reduce to those ofclilssical mechanics. The 
wave-particle duality principle is the basis on which we will use wave theory to de- 
scribe the motion and behavior of electrons i n  a crystal. 

TEST YOUR UNDERSTANDING I 
EZ.1 Determine the energy of a photon having wavelengths of (a) A = 10.000 A and (b) 

A = I O A .  h a  ,OI x pz.1 101 01 x 6 6 1  (4)  : ~ ~ P Z I  101 n , - ~ ~  x 6 6 1  (0) s ~ v 1  
E2.2 (a) Find the momentum and energy uf a particle with mass of 5 x kg and a 

de Broglie wavelength of 180 A. (b)  An electron has a kinetic energy of 20 meV. 
Determine the de Bmglie waaslmgth. 1Vf.98 = Y 'V1u-a4 s i -Ol  X b9.1 = ('1) 

1-01 x 9 v 8 m  o ,;$I[ x SE'I = 3 ' s p - 4 1  , , O I  x 8 9 ' ~  = d (u )  ' SUVI  

2.1.3 The Uncertainty Principle 

The Heisenberg uncertainty principle, given in 1927, also applies primarily to very 
small particles, and states that we cannot describc with absolute accuracy the hchav- 
ior of these subatomic particles. The uncertainty principle describch a fundamental 
relationship between conjugate variables, including position and momentum and also 
energy and time. 

Tbcfirst statcment ofthe uncertainty principle is that it is impossible to simulta- 
neously describe with absolute accuracy the position and momentum of a particle. If 
the uncertainty in the momentum is Ap and the uncertainty in the postion is A x ,  then 
the uncertainty principle is stated as' 

where 6 is defined as ii = h / 2 n  = 1.054 x lo-" J-s and is called a modified 
Planck's constant. This statement may be generalized to include angular position and 
angular momentum. 

The second statement of the uncertainty principle is that it is impossible to si- 
multaneously describe with absolute accuracy the energy of a particle and thc instant 
oftime the particle has this energy. Again. if the uncertainty in the energy is given by 
AE and the uncertainty in the time is given by Ar,  then the uncertainty principle is 
stated as 

One way to visualize the uncertainty principle is to consider the simultaneous 
measurement of position and m(mentum, and the simultaneous measurement of en- 
ergy and time. The uncertainty principle implies that these simultaneous measurements 

'In borne texts, the uncenainty principle ir stated a, Ap Ax 2 h l 2 .  We are interested herc in the order of 
magnitude and will not be concerned with small differences. 
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are in error to a certain extent. However, the modified Planck's constant ti is very 
small; the uncertainty principle is only significant for subatomic particles. We must 
keep in mind nevertheless thatthe uncertainty principle is a fundamental statement and 
does not deal only with measurements. 

One consequence of the uncertainty principle is that we cannot. for example. de- 
termine the exact position of an electron, We will, instead, detcrmine the probrrbility 
of finding an electron at a particular position. In later chapters, we will develop a 
probubili~s density function that will allow us to determine the probability that an 
electron has a particular energy. So in describing electron behavior, we will he deal- 
ing with probability functions. 

I TEST YOUR UNDERSTANDING 

E2.3 The uncertainty in position of an electron is 12 A. Determine the minimum 
uncertainty in momentum and also the corresponding uncertainty i n  kinetic energy. 
(ha SYZO'O = ,?v 's~m-dy sz-ol x 6 ~ 3  = dv 'SUV) 

E2.4 An electron's energy is measured with an uncertainty of 1.2 eV. What is the minimum 
uncertainty in time over which the energy is measured'? (' 91-01 X hP'S = i V  S U V )  

2.2 1 SCHRODINGER'S WAVE EQUATION 
The various experimental results involving electromagnetic waves and particles. 
which could not be explained by classical laws of physics, showed that a revised for- 
mulation of mechanics was required. Schrodinger, in 1926. provided a formulation 
called wme mechanic.r, which incorporated the principles of quanta introduced by 
Planck, and the wave-particle duality principle introduced by de Broglie. Based on the 
wave-particle duality principle. we will describe the motion of electrons in a crystd 
by wave theory. This wave theory is described by Schrodinger's wave equation. 

2.2.1 The Wave Equation 

The one-dimensional, nonrelativistic Schrodinger's wave equation is given by 

where W ( r  I )  is the wave function, V ( x )  is the potential function assumed to be in- 
dependentof time, fn is the mass of the particle, and, is the imaginary constant n. 
There are theoretical arguments thatjustify the form uf Schrodinger's wave equation. 
hut the equation is a basic postulate of quantum mechanics. The wave function 
W ( x ,  I )  will be used to describe the behavior of the system and, mathematically, 
W i x .  t )  can be a complex quantity. 

We may determine the time-dependent portion of the wave function and the 
position-dependent, or time-independent, portion of the wave function by using the 
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technique of separation of variables. Assume that the wave function can he written in 
the form 

where @ ( x )  is afunction of the position x only and b ( t )  is a function of time t only. 
Substituting this form of the solution into Schrodinger's wave equation, we obtain 

If we divide by the total wave function. Equation (2.8) becomes 

Since the left side of Equation (2.9) is a function of position x only and the right side 
of the equation is a function of time t only, each side of this equation must he equal 
to aconstant. We will denote this separation of variables constant by q.  

The time-dependent portion of Equation (2.9) is then written as 

where again the parameter 7 is called a separation constant. The solution of Equa- 
tion (2.10) can be written in the form 

The form of this solution is the classical exponential form of a sinusoidal wave where 
q/h  is the radian frequency w .  We have that E = h u  or E = hw/2n. Then 
w = q / f i  = E/R so that the separation constant is equal to the total energy E of the 
particle. 

The time-independent portion of Schrodinger's wave equation can now he writ- 
ten from Equation (2.9) as 

where the separation constant is the total energy E of the particle. Equdtion (2.12) 
may he written as 

where again m is the mass of the particle, V ( x )  is the potential experienced by the par- 
ticle, and E is the total energy of the particle. This time-independent Schrodinger's 
wave equation can also be justitied on the basis of the classical wave equation as 
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shown in Appendix E. The pseudo-derivation in the appendix is a simple approach 
but shows the plausibility of the time-independent Schrodinger's equation. 

2.2.2 Physical Meaning of the Wave Function 

We are ultimately trying to use the wave function W(x, I) to describe the behavior of 
an electron in a crystal. The function *(x, t )  is a wave function. so it is reasonable to 
ask what the relation is between the function and the electron. The total wave runc- 
tion is the product of the position-dependent, or time-independent, function and the 
time-dependent function. We have from Equation (2.7) that 

Since the total wave function W(x, I) is a complex function. it cannot by itself repre- 
sent a real physical quantity. 

Max Born postulated in 1926 that the function (Y(.x, t)('dx is the probability of 
finding the particle between .x and x + dx at a given time, or that l*(x. t)12 is a prob- 
ability density function. We have that 

where W*(x, I) is the complex conjugate function. Therefore 

+(iE/hl i  * * ( . , , I )  = *yr) . P 

Then the product of the total wave function and its complex conjugate i\ given by 

Therefore, we have that 

is the probability density function and is independent of time. One major difference 
between classical and quantum mechanics i s  that in classical mechanics, the posi- 
tion of a particle or body can be determined precisely, whereas in quantum mechan- 
ics, tbe position of aparticlr is found in terms o f a  probability. We will determine the 
probability density function for several examples, and, since this property is inde- 
pendent of time. we will, in general, only be concerned with the time-independent 
wave function. 

2.2.3 Boundary Conditions 

Since the function lW(x. t)12 represents the probability density function, then for a 
single particle. we must have that 
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The probability of finding the particle somewhere is certain. Equation (2.18) allows 
us to normalize the wave function and is one boundary condition that is used to de- 
termine some wave function coefficients. 

The remaining boundary conditions imposed on the wave function and its deriva- 
tive are postulates. However. we may state the boundaly conditions and present argu- 
ments that justify why they must be imposed. The wave function and its first derivative 
must have the following properties if the total energy Eand the potential V(x) are finite 
everywhere. 

Condition 1. $(I) must be finite, single-valued, and continuous. 

Condition 2. a$(x)/ax must be finite, single-valued, and continuous. 

Since $(x)12 is a probability density, then $(x) must be finite and single-valued. 
If the probability density were to become infinite at some point in space, then the 
probability of finding the particle at this position would be certain and the uncer- 
tainty principle would be violated. If the total energy E and the potential V(x) are 
finite everywhere, then from Equation (2.13), the second derivative must be finite, 
which implies that the first derivative muht be continuous. The first derivative is 
related to the particle momentum, which must be finite and single-valued. Finally, a 
finite first derivative implies that the function itself must be continuous. In some of 
the specific examples that we will consider, the potential function will become infi- 
nite in particular regions of space. For these cases. the first derivative will not nec- 
essarily be continuous, but the remaining boundary conditions will still hold. 

2.3 I APPLICATIONS OF SCHRODINGER'S WAVE 
EQUATION 

We will now apply Schrodinger's wave equation in several examples using various 
potential functions. These examples will demonstrate the techniques used in the so- 
lution of Schrodinger's differential equation and the results of these examples will 
provide an indication of the electron behavior under these various potentials. We will 
utilize the resulting concepts later in the discussion of semiconductor properties. 

2.3.1 Electron in Free Space 

As a first example of applying the Schrodinger's wave equation, consider the motion 
of an electron in free space. If there is no force acting on the particle, then the poten- 
tial function V(x) will be constant and we must have E > V(x). Assume, for sim- 
plicity, that the potential function V(x) = 0 for all x .  Then, the time-independent 
wave equation can be written from Equation (2.13) as 

The solution to this differential equation can be written in the form 
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Recall that the time-dependent portion of the solution is 

q,(t~ = e - ~ l E l f i l ~  (2.21) 

Then the total solution for the wave function is given by 

This wave function solution is a traveling wave, which means that a particle moving 
in free space is represented by a traveling wave. The first term, with the coefficient A .  
is a wave traveling in the +I direction, while the second term, with the coefticient B. 
is a wave traveling in the x direction. The value of these coefficients will be deter- 
mined from boundary conditions. We will again see the traveling-wave solution for 
an electron in acrystal or semiconductor material. 

Assume, for a moment, that we have a particle traveling in the +x direction. 
which will he described by the +x traveling wave. The coefficient B = 0. We can 
write the traveling-wave solution in the form 

Y(x, f) = A exp [ j  (k.x - wt) ]  (2 .23)  

where k is a wave number and is 

The parameter A is the wavelength and, comparing Equation (2 23) with Equa- 
tlon (2.22), the wavelength 1s given by 

From de Broghe'? wave-part~cle duahty prlnc~ple, the wavelength 1s also gwen by 

A free particle with a well-defined energy will also have a well-defined wavelength 
and momentum. 

The probability density function is Y(x, t)Y*(x, t )  = AA*,  which is aconstanr 
independent of position. A free particle with a well-defined momentum can be found 
anywhere with equal probability. This result is in agreement with the Heisenberg nn- 
certainty principle in that a precise momentum implies an undefined position. 

A localized free particle is defined by a wave packet, formed by a superposition 
of wave functions with different momentum or k values. We will not consider the 
wave packet here. 

2.3.2 The Infinite Potential Well 

The problem of aparticle in the infinite potential well is a classic example of a bound 
particle. The potential V ( x )  as a function of position for this problem is shown in 
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Bigure2.5 1 Potential function of the infinite 
potential well. 

Figure 2.5. The particle is assumed to exist in region I1 so the particle is contained 
within a finite region of space. The time-independent Schrodinger's wave equation is 
again given by Equation (2.13) as 

where E is the total energy of the particle. If E is finite, the wave function must be 
zem, or *(x) = 0, in both regions I and 111. A particle cannot penetrate these in- 
finite potential barriers, so the probability of finding the particle in regions I and 
111 is zero. 

The time-independent Schrodinger's wave equation in region 11, where V = 0. 
becomes 

A particular form of solution to this equatlon 1s given by 

$(x) = A , c o s K x + A ? s i n K x  (2 28) 

where 

One boundary condit~on is that the wave function $ ( x )  must be contmuou\ so 
that 
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Applymg the hounddry condlt~on at r = 0, we mu\t have that A ,  = O At x = a, we 
have 

$(x = a )  = O = A? sin K a  (2 31) 

This equation is valid if K a  = n n .  where the parameter n is a positive integer, or 
n = 1 , 2 , 3 .  . . . . The parameter n is referred to as a quantum number. We can write 

Negative values of n simply introduce a negative sign in the wave function and yield 
redundant solutions for the probability density function. Wc cannor physically dis- 
tinguish any difference between +n and -n solutions. Becausc of this redundancy, 
negative values of n are not considered. 

The coefficient A2 can be found from the normalization boundary condition that 
was given by Equation (2.1 8) as Jz $(x)$r*(x) d.x = I .  If we assume that the wave 
function solution $(x) is areal function, then $(x) = $r*(x). Substituting the wave 
function into Equation (2.18), we have 

Evaluatmg this integral gives' 

Finally. the time-independent wave solution is given by 

This solution represents the electron in the intinite potential well and is a stand- 
ing wave solution. The free electron was represented hy a traveling wave. and now 
the bound particle is represented by a standing wave. 

The parameter K in the wave solution was defined by Equations (2.29) and 
(2.32). Equating these two expressions for K .  we obtain 

'A morc thorough analysis s h o w  lhat 1A1' = 2/o. so solutions ibr the coefficient A2 include +m, 
-a, +jm, -jm. or any complex number whose magnitude is m. Since the wave 
function itself has no physical meaning, the choice of which coefficient to usc is immaterial: They all 
produce the same prohahllity density iunclion. 
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The total energy can then be wntten as 

For the particle in the infinite potential well. the wave function is now given by 

where the constant K must have discrete values, implying that the total energy of the 
particle can only have discrete values. This result meuns that the energy of the parti- 
cle is quantized. That is, the enerfl ofthe particle can only have particular discrete 
vulues. The quantization of the particle energy is contrary to results from classical 
physics, which would allow the particle to have continuous energy values. The dis- 
crete energies lead to quantum states that will be considered in more detail in this 
and later chapters. The quantization of the energy of a bound particle is an extremely 
important result. 

Objective I EXAMPLE 2.3 

Tocalculate the first three energy levels of an electron in an infinite potential well. 
Conslder an electron in an mfinlle potentral well of wrdth 5 A 

I Solution 
From Equatlon (2.37) we have 

or 

Then, 

I Comment 
This calculation : 

E l  = 1.51 eV. E2 = 6.04 eV. E l  = 13.59 eV 

shows the order of magnitude of the energy levels of a bol 

Figure 2.6a shows the first four allowed energies for the particle in the infinite 
potential well, and Figures 2.6b and 2 . 6 ~  show the corresponding wave functions and 
probability functions. We may note that as the energy increases, the probability of 
finding the particle at any given value of x becomes more uniform. 
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Figure 2.6 I Particle i n  an infinite potential well: (a) Four lowest discrete energy levels. 
(b) Corresponding wave functions. (c) Corresponding probability functions. 
(From Pierret [ 9 / )  

TEST YOUR UNDERSTANDING 

E2.5 The width of the infinite potential well in Example 2.3 is doubled to 10 A. Calculate 
the first three energy levels i n  terms of electron vults for an electron. 
(i\a XE'E 'i\a u s 1  'i\a  LEO 'SUV) 

E2.6 The lowest energy of a particle in an infinite potential well with a width of 100 A is 
0.025 eV What is the mass of the panicle? (22 ,L-O1 x L E ' I  'SUV) 

2.3.3 The Step Potential Function 

Consider now a step potential function as shown in Figure 2.7. In the previous section. 
we considered a particle being confined between two potential harriers. In this exam- 
ple, we will assume that a flux of particles is incident on the potential barrier. We will 
assume that the particles are traveling in the +x direction and that they originated at 
x = -m. A particularly interesting result is obtained for the case when the total 
energy of the particle is less than the barrier height, or E < Vo. 

We again need to consider the time-independent wave equation in each of the two 
regions. This general equation was given in Equation (2.13) as a2$(r ) /8x2 + 
2m/e2(E - V(x))$(x) = 0. The wave equation in region I, in which V = 0, is 



2.3 Applications of Schrodnger3 Wave Equation 

Region I I Region 11 

I 
x = 0 

Figure 2.7 1 The step potential function. 

The general solut~on to thl\ equatlon can be wrltten in the form 

$ l ( x )  = AleJK1'  + ~ t e ' ~ ~ '  (X 5 0) (2 40) 

where the constant K I  IS 

The first term in Equation (2.40) is a traveling wave in the +x direction that repre- 
sents the incident wave, and the second term is a traveling wave in the -i direction 
that represents a reflected wave. As in the case of a free particle, the incident and 
reflected particles are represented by traveling waves. 

For the incident wave, A, - A; is the probability density function of the incident 
panicles. If we multiply this probability density function by the incident velocity, 
then ui . A1 . A ;  is the flux of incident particles in units of #lcm2-s. Likewise, the 
quantity v, - B1 . B; is the Hux of the reflected particles, where u, i s  the velocity of 
the reflected wave. (The parameters v, and u, in these terms are actually the magni- 
tudes of the velocity only.) 

In region 11, the potential is V = Vu. If we assume that E < Vo, then the differ- 
ential equation describing the wave function in region 11 can be written as 

The general solution may then be written in the form 

7,!4(x) = A2CK2' + B2efK?' (X 2 0) (2.43) 

where 

One boundary condition is that the wave function $z(x) must remain finite, 
which means that the coefficient B2 = 0. The wave function is now given by 
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The wave function at x = O must be continuous so that 

$ I (O)  = l h ( O )  (2.46) 

Then from Equations (2.40), (2.45) and (2.46), we obtain 

Since the potential function is everywhere finite, the first derivative of the wme 
function must also be continuous so that 

Using Equations (2.40), (2.45), and (2.48), we ohtam 

We can solve Equations (2.47) and (2.49) to determine the coefficients BI and 
Az in terms of the incident wave coefficient A l .  The results are 

The reflected probability density function is given by 

We can define a reflection coefficient, K ,  as the ratio of the reflected flux to the 
incident flux, which is written as 

where t!i and u, are the incident and reflected velocities. respectively. of the particles. 
In region I, V = O so that E = T, where T is the kinetic energy of the particle. The 
kinetic energy is eiven by 

so that the conqtant Kl, from Equatlon (2 41), may be wrltten a5 
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The incident velocity can then be written as 

Since the reflected part~cle a h  exists in region I, the reflected veloc~ty (magnitude) 
1s glven by 

The incident and reflected velocities (magnitudes) are equal. The reflection coeffi- 
clent is then 

Substituting the expression from Equation (2.5 1) into Equation (2.57), we obtain 

The result of R = I implies that all of the particles incident on the potential bar- 
rier for E < Vn are eventually reflected. Particles are not absorbed or transmitted 
through the potential barrier. This result is entirely consistent with classical physics 
and one might ask why we should consider this problem in terms of quantum me- 
chanics. The interesting result is in terms of what happens in region 11. 

The wave solution in region 11 was given by Equation (2.45) as $'(x-) = AzecK'". 
The coefficient A? from Equation (2.47) is A? = A I  + B I  , which we derived from 
the boundary conditions. For the case of E c Vu, the coefficient A2 is not zero. If A? 
is not zero, then the probability density function $z(x) . $;(x) of the particle being 
found in region I1 is not equal to zero. This result implies that there is afinite pro- 
bability that the incident particle will penetrate the polential barrier and exist in 
region 11. The prababi l i~  r?f a particle penetrating the potentiul burrier is another 
difference between classical and quanrtrm mechanics: The quuntum mechanicalpen- 
etrution is classically not allowed. Although there is a finite probability that the par- 
ticle may penetrate the barrier, since the reflection coefficient in region I is unity, the 
particle in region I1 must eventually turn around and move back into region 1. 

Objective I EXAMPLE 2.4 

To calculate the penetration dcpth of a panicle impinging on a potential barricr. 

Consider an incident electron that is traveling at a velacity uf I x 105 m/s  in region I. 

Solution 
Wnh V ( x )  = 0, the total energy is also equal tu the klnrt~i energy $0 that 
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Now, assume that the potential barrier at x = 0 is twice as large as the total energy of the inci- 
dent particle, or that Vo = 2E. The wave function solution in region I1 is $?(I) = A 2 C K ? . ' .  
where the constant Kz  is given by K ,  = J z , ~ ( v ~  - E)/1t2. 

In this example, we want to determine the distance x = d at which the wave function 
magnitude has decayed toe- '  of its value at I = 0. Then, for this case, we have Kzd  = 1 or 

The dlstance is then glven by 

Comment 
This penetration distance corresponds to approximately two lattice constants of silicon. The 
numbers uscd in this example are rather arbitrary. We used a distance at which the wave func- 
tion decayed to e ' of its initial value. We could have arbitrarily used r,-'. for example, but 
the results give an indication of the magnitude of penetration depth. 

The case when the total energy of a particle, which is incident on the potential 
barrier, is greater than the barrier height, or E > Vu, i s  left as an exercise at the end 
of the chapter. 

I TEST YOUR UNDERSTANDING 

E2.7 The probability of finding a panicle a1 a distanced in region 11 compared to that at 
r = 0 is given by exp ( - 2 K , d ) .  Consider an electron traveling in region I a1 a \'eloc- 
ity of 10' mis incident on a potential banier whose height is 3 times the kinetic 
energy of the electron. Find the probability of finding the electron at a distance r l  

compared to x = 0 where d i s  (a)  10 A and (b)  100 A into the potential barrier 
[lua~iad 6.0~ x ES'Z (4) 'waxad Z L ' ~  (0)  'SUVI 

2.3.4 The Potential Barrier 1 
We now want to consider the potential banier function, which is shown in Figure 2.8. 
The more interesting problem, again, is in the case when the total energy of an incident 
particle is E c V".Again assume that w e  have a flux of incident particles originating 
on the negative x axis traveling in the +x direction. As before, we need to solve 
Schrodinger's time-independent wave equation in each of the three regions. The 
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where 

and 

x = f l  r = u  

Figure 2.8 1 The potential barrier function. 

solutions of the wave equation in regions I, 11, and 111 are given, respectively, as 

+,(x) = + ~ , e - i ~ ~ ~  (2.59a) 

+ , (x )  = A2eK:,' + B y - K 2 r  (2.59b) 

Ijr;(x) = ~ ; e j ~ l '  + ~ 3 e - j ~ ~ ~  (2 .59~)  

The coefficient Bi in Equation (2 .59~)  represents a negative traveling wave in 
region 111. However, once a particle gets into region 111, there are no potential changes 
to cause a reflection; therefore, the coefficient Bj must be zero. We must keep both 
exponential terms in Equation (2.59b) since the potential barrier width is finite; that 
is, neither term will become unbounded. We have four boundaly relations for the 
boundaries at x = 0 and x = a corresponding to the wave function and its first deriv- 
ative being continuous. We can solve for the four coefficients B I ,  A:, BZ. and A? in 
terms of A , .  The wave solutions in the three regions are shown in Figure 2.9. 

One particular parameter of interest is the transmission coefficient, in this case 
defined as the ratio of the transmitted flux in region I11 to the incident flux in region I .  
Then the transmission coefficient T is 
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1 I 
r = O  1 = 0  

Figure 2.9 1 The wave functions through the potential barrier. 

where u, and ~ ' i  are the velocities of the transmitted and incident particles, respec- 
tively. Since the potential V = 0 in both regions I and 111, the incident and transmit- 
ted velocities are equal. The transmission coefficient may be determined by solving 
the boundary condition equations. For the special case when E << Lf,, we find that 

Equation (2.62) implies that there is afinite probability thar a particle in~ping- 
infi a potential barrier will penetrate the barrier and will upprrrr in region 111. This 
phenomenon is called tunneling and it, roo, contradicts classical mechanics. We will 
see later how this quantum mechanical tunneling phenomenon can be applied to 
semiconductor device characteristics, such as in the tunnel diode. 

EXAMPLE 2.5 1 Objective 

To calculate the probability of an electron tunneling through a potential barrier. 
Consider an electron with m energy of 2 cV impinging on a potential banier with Vcj = 

20 eV and a width of? A. 

w Solution 
Equation (2.62) is the tunneling probability. The fdctor K2 i s  

Then 

T = lh(O. l ) ( l  - 0  l)exp[-2(2.17 x 10'0)(3 x 1 0 ' ~ ) 1  

and finally 

T = 3.17 x lo-" 
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I Comment 
The tunneling probability may appear to be a small value, but the wlue is nut zero If a 
large number of particlcr impinge on a potential barrier, a significant number can penetrate 
the barrier. 

TEST YOUR UNDERSTANDING I 
E2.8 Estimate the tunneling probability of an electron tunneling through a rectangular 

barrier with a barrier height of V, = 1 eV and a barrier width of 15 A. The elcctron 
energy is 0.20 eV (9-01 x 9L'Z = L 5uV) 

E2.9 For a rectangular potential barrier with a height of V,, = 2 cV and an elcclrun with 
an energy of 0.25 eV, plot the tunneling probability versus barricr width over the 
range 2 5 rr 5 20A. Usc alog rcale for the tunneling probability. 

E2.10 Acenain semiconductor device requires a tunneling probability uf T = IW' fnr an 
electron tunneling through arectangularbarrier with a barrier height of Vo = 0.4 cV, 
The electron energy is 0.04 eV Determine the maximum barricr width. 
(y E'61 = n 'suv) 

Additional applications of Schrodinger's wave cquation with vlmous one- 
dimensional potential functions are found in problems at the end of thc chapter. Sev- 
eral of these potential functions represent quantum well structures that are found in 
modern semiconductor devices. 

*2.4 1 EXTENSIONS OF THE WAVE THEORY 
TO ATOMS 

So far in this chapter. we have considered several one-dimensional potential energy 
functions and solved Schrodinger's tirne-independent wave equation to obtain the 
probability function of finding a particle at various positions. Consider now the one- 
electron, or hydrogen, atom potential function. We will only briefly consider the math- 
ematical details and wavc function solutions, but the resulrs are extremely interesting 
and important. 

2.4.1 The One-Electron Atom 

The nucleus is a heavy, positively charged proton and the electron is a light. nega- 
tively charged particle that, in the classical Bohr theory, is revolving around the nu- 
cleus. The potential function is due to the coulomb attraction between the proton and 
electron and is given by 

where e is the magnitude of thc electronic charge and €0 is the permittivity of free 
space. This potential function, although spherically symmetric, leads to a three- 
dimensional problem in spherical coordinates. 
- 
+Indicates sections that cm be skipped without loss olcontinuity, 
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We may generalize the time-independent Schrodinger's wave equation to three 
dimensions by writing 

where V2 is the Laplaciau operator and must be written in spherical coordinates for 
this case. The parameter mo is the rest mass of the electron.' In spherical coordinates, 
Schrodinger's wave equation may be written as 

The solution to Equation (2.65) can be determined by the separation-of-variables 
technique. We will assume that the solution to the time-independent wave equation 
can be written in the form 

where R .  0, and @, are functions only of r. H, and @, respectively. Substituting this 
form of solution inlo Equation (?.65), we will obtain 

We may note that the second term in Equation (2.67) is a function of @ only, 
while all the other terms are functions of either r or 8.  We may then write that 

where m is a separation of variables constant? The soluLion to Equation (2.68) is of 
the form 

= (2.69) 

Since the wave function must be single-valued. we impose the condition that m is an 
integer, or 

m = 0 , 1 1 , 1 2 . & 3  , . . .  (2.70) 

'The mass should be the rest mass of the two-panicle system, hut since the proton rmass is much greater 
than the electron mass, the equivalent mass reduces to that uf the electron. 

'Where m means the separation~lrlviiriables constnnl developed historically. That meaning will be 
retained here even though there may be some confusion with the electron masq In general, the mass 
parameter will be used in conjuncrion with a subscript. 
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Incorporating the separation-of-variables constant we can further separate the 
variables Band r and generate two additional separation-of-variables constants 1 and n.  
The separation-of-variables constants 11.1. and m are known as quorrtum numbers and 
are related by 

Each set of quantum numbers corresponds to a quantum state which the electron may 
occupy. 

The electron energy may be written in the form 

where n is the principal quantum number. The negative energy indicates that thc elec- 
tron is bound to the nucleus and we again see that the energy of the bound electron is 
quantized. If the energy were to become positive, then the electron would no longer he 
a bound panicle and the total energy would no longer be quantized. Since the parame- 
tern in Equation (2.72) is an integer, the total energy of the electron can take on only 
discrete values. The quantized energy is again a result of the particle being bound in a 
finite region of space. 

TEST YOUR UNDERSTANDING 1 
EL11 Calculate the lowest enerey (in electron volts) of an electron in a hydrqen atom 

(ha qtl- = '3 'mv) 

The solution of the wave equation may be designated by where n ,  I ,  and 
mare again the various quantum numbers. For the lowest energy state, 11 = 1 . 1  = 0, 
andm = 0, and the wave function is given by 

Th~s function is spherically symmetric, and the parameter a0 is given by 

and is equal to the Bohr radius. 
The radial probability density function, or the probability of finding the electron 

at a particular distance from the nucleus, is proportional to the product +lcn,. $;ao 
and also to the differential volume of the shell around the nucleus. The probability 
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Figure 2.10 I The r.id~al probdbhty densny functmn for the one-eleitron atom in the 
(a) lowe\t energy ?late nnd (h) next-hlgher energy slate 
(From E ~ i b e r ~  aridRrauck 141 j 

density function for the lowest energy state is plotted in Figure 2.10a. The most prob- 
able distance from the nucleus is at r = ao, which is the same as the Bohr thcory. 
Considering this spherically syrnmctric probability function, we may now bcgin to 
conceive the concept of an electron cloud, or cnergy shell, surrounding the nucleus 
rather than a discrete particle orbiting around the nucleus. 

The radial probability density function for the next higher, spherically symmet- 
ric wave function, corresponding to n = 2, l  = 0. and m = 0, is shown in Fig- 
ure 2.10b. This figure shows the idea of the next-higher energy shell of the electron. 
The second energy shell is at a greater radius fmm the nucleus than the first enersy 
shell. As indicated in the figure, though, there is still a small probability that the 
electron will exist at the smaller radius. For the case of n -- 2 and I = I. thcre are 
three possible states corresponding to the three allowed values of the quantum num- 
berm. Thehe wave functions are no longer spherically symmetric. 

Although we have not gone into a great deal of mathematical detail for the one- 
electron atom, three rcsults are important for the further analysis of semiconductor ma- 
terials. The first is the solution of Schrodinger's wave equation, which again yields 
electron probability functions, as it did for the simpler potential functions. In develop- 
ing the physics of semiconductor materials in later chapters, we will also be consider- 
ing electron probability functions. The second result is the quantization of allowed en- 
ergy levels for the hound electron. The third is the concept of quantum numbers and 
quantum states, which evolved from the separation-of-variables technique. We will 
consider this concept again in the next section and in later chapters when we deal with 
the semiconductor material physics. 

2.4.2 The Periodic Table 

The initial portion of the periodic table of elements may he determined by using the 
results of the one-electron atom plus two additional concepts. The tirst concept 
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needed is that of electron .spin. The electron has an intrinsic angular momentum, or 
spin. which is quantized and may take on one of two possible values. The spin is 
designated by a quantum numbers, which has a value of s = +; or s = - 4. We now 
have four basic quantum numbers: n. I, m, and .r. 

The second concept needed is the Puuli e.rclu.rionprinciplr. The Pauli exclusion 
principle states that, in any given system (an atom, molecule, or crystal), no two elec- 
trons may occupy the same quantum state. In an atom, the exclusion principle means 
that no two electrons may have the same set of quantum numbers. We will see that 
the exclusion principle is also an imponant factor in determining the distribution of 
electrons among available energy states in a crystal. 

Table 2.1 shows the first few elements of the periodic table. For the first element. 
hydrogen, we have one electron in the lowest energy state corresponding to n = I. 
From Equation (2.71) both quantum numbers 1 and m must be zero. However, theelec- 
Iron can take oneither spin factor ti or -4. Forhelium, two electrons may exist in the 
lowest energy state. For this case, I = m = 0, so now both electron spin states are oc- 
cupied and the lowest energy shell is full. The chemical activity of an element is deter- 
minedprimarily by the valence, or outermost, electrons. Since the valence energy shell 
of helium is full, heliumdoes not react with other elements and is im inenelement. 

The third element, lithium, has three electrons. The third electron must go into 
the second energy shell corresponding ton  = 2. When n = 2, the quantum number 1 
may be 0 or I, and when l = 1,  the quantum number H I  may be - 1.0, or + I .  In each 
case, the electron spin factor may be f or -;. For n = 2, then, there are eight pos- 
sible quantum states. Neon has ten electrons. Two electron, are i n  t h e  n = I energy 
shell and eight electrons are in the n = 2 energy shell. The second energy shell is 
now full, which means that neon is also an inert element. 

From the solution of Schrodinger's wave equation for the ime electron atom, 
plus the concepts of electron spin and the Pauli exclusion principle, we can begin to 
build up the periodic table of elements. As the atomic numbers of the elements in- 
crease, electrons will begin to interact with each other, so that the buildup of the pe- 
riodic table will deviate somewhat from the simple method. 

Table 2.1 1 l n m l  portlon of the per~odri table 

Element Notation n 1 m s < -. - 
Hydrogen I r '  1 0 0 +Ior-I 2 2 

Helium 
Lithium 
Beryllium 

Boron 

Carbon 

Nitrogen 
Oxygen 
Fluorine 
Neon 

0 +f and-f 
0 +lor-i  2 2 

0 + j  and -+ 
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2.5 1 SUMMARY 
We considered home of the basic concepts of quantum mechanics, which can he used to 
describe the behavior of electrons under various potential functions. The understanding 
of electron behavior is crucial in understanding semiconductor physics. 
The wave-particle duality principle is an impartant element in quantum mechanics. 
Particles can have wave-like behavior and waves can have particle-like behavior. 
Schrodinger's wave equation forms the basis for describing and predicting the behavior 
of electrons. 
Man Born postulated that )$(*)I' is a probability density function. 

I 
Aresult of applying Schrodinger's wave equation to a bound panicle is that the energy 
of the bound particle is qunnri,-ed. 
A result of applying Schrodinger's wave equation tu an electron incident on a potential 
barrier is that there is a tinite probability of ruroir/i,rfi. 1 
The basic structure of the periodic table is predicted by applying Schrodinger's wave 
cquatian to the one-elecuon atom. 

GLOSSARY OF IMPORTANT TERMS 
de Bruglie wavelength The wavelength of a particle given as the ratio of Planck's constant 

to mommtuni. 
Heisenherg uncertainty principle The principle that states that we cannot describe with 

absolute accuracy the relationship between sets of conjugate variables that describe the be- 
havior of particles, such as momentum and position. 

Pauli exrlusiun principle The principle that states that no two electrons can occupy the 
same quantum state. 

photon The particle-like packet of electrurnagnetic energy. 
quanta The particle-like packet of thermal radiation. 
quantized energies The allowed discrete energy levels that bound particles may occupy. 

quantum numbers A set of numbers that describes the quantum sfate of a particle, such as 
an electron in an atom. 

quantum state Aparticular state of an electron that may be described, for example, by a set 
of quantum numbers. 

tunneling The quantum mechanical phenomenon by which a particle may penetrate through 
a thin potential banicr. 

Wave-particle duality The characteristic by which electromagnetic waves sometimes ex- 
hibit piuticle-like behavior and particles sometimes exhibit wave-like behavior. 

CHECKPOINT 
After studying thi\ chapter, the reader should have the ability tw 

Discuss the principle of energy quanta, the wavr-particle duality principle, and the 
uncertainty principle. 
Apply Schrodinger's wave equation and boundary conditions to problems with various 
potential functions. 
Determine quantized energy levels of bound particles. 
Determine the approximate tunneling probability of a particle incident on a potential 
barrier. 



Problems 

REVIEW QUESTIONS 
I. State the wave-panicle duality principle and state the relationship between momcntum 

and wavelength. 

2. What is the physical meaning of Schrodinger's wave function? 

3. What is meant by a probability density function? 

4. List the boundary crmditions for solutions to Schrodinger's wave equation. 

5. What is meant by quantized energy levels? 

6. Describe the concept of tunneling. 

7. Lid the quantumnumbers of the one-electron atom and discuss how they were developed 

PROBLEMS 
2.1 The classical wave equation for a two-wire transmission line is given by - -- - {Qg a2V(x, t)/ar2 = L C .  a2V(x. t ) / a t2 .  One pussible solution is givenhy V(x, t )  = . - 

(sin K r )  . (sinot) where K = nr lo  and w = K / m .  Sketch, on the same graph. 
the function V(s,  t )  as a function o f x  for 0 5 x 5 n a n d  11 = 1 when (i) wr = 0, 
(ii) wr = 1112. (iii) wr = ri, (iv) wt = 3n/2 ,  and (i.) wt = 2 n .  

2.2 The function V(x. t )  = cos (217 r / h  - o ~ t )  is also a solution to  the classical wave 3 - - 

equation. Sketch on the same graph the function V(x, I )  as afunction o i x f o r  ~OJ 
0 5 x 5 3A when: (i) wt = 0, (ii) mr = 0 . 2 5 ~ .  (iii) wi = 0 . 5 ~ .  (iv) wt = 0 . 7 5 ~ .  and 
( v ) o t  = n .  

2.3 Repeat Problem 2.2 for thc function V(x, I )  = cos (2nx lh  + wt). -- 
2.4 Determine the phase velocities of the traveling waves described in Problems 2.2 

Qg 
- 
/ 

and 2.3. -- 

Section 2.1 Principles of Quantum Mechanics 

2.5 The work function of a material rcfers to the mininlur energy required to remove an 
electron from the material. Assume that the work function of gold ir 4.90 eV and that 
of cesium is 1.90 eV. Calculate the maximum wavelength of light for the photoclectric 
emission of electrons ior gold and ccsium. 

2.6 Calculate thede Broglie wavelength, A = hlp.  for: (a)  An electron with kinetic en- 
ergy of (i)  1.0 eV, and (ii) 100 eV. (b) A proton with kinetic energy o i  I 0  eV. (c) A 
singly ionized tungsten atan? with kinetic encrgy of 1.0 cV ( d )  A 2000-kg tmck trav- 
eling at 20 m/s. 

2.7 According to classical physics, the average energy at' an electron in an electron gas at 
thermal equilibrium is 3kT12. Dcterminc, for T = 300 K, the average electron energy 
(in eV), average electron momentum, and the de Broglie wavelength. 

$2.8 An electron and a photon have the same energy. At what value of energy (in eV) will 
the wavelength of the photon he 10 rimes that of the electron? 

2.9 (a) An electron is moving with a velocity nf 2 x 106 cmls. Determine the electron en- 
ergy (in eV), momentum, and de Broglie wavelength (in A). (6) The dc Broglic wave- 
length of an electron is 125 A. Determine the electron energy (in eV), momentum, 
and velocity. 

2.10 It is desired to produce x-ray radiation with a wavelength of I A. ( a )  Through what 
potential voltage difference must the electrun be accelerated in vacuum so that it can, 
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upon colliding with a target. generate such a photon'! (Assume that all of the 
electron's energy is tranarerred to the photon.) (h) Whal is the de Broglie wavelength 
of the electron in part (a )  just before it hits the target? 

2.11 When the uncertainty principle is considered, it is not possible to locate a photon in 
space more precisely than about one wavelength. Consider a photon with wavelength 
A = I p.m. What is the uncertainty in thc photon's ( a )  mornenturn and (h) energy? 

2.12 The uncertainty in position is 12 A f a r  a particle of mass 5 x 10-" kg. Determine the 
minimum uncertainty in (a) the momentum of the panicle and (6) the kinetic energy 
of the particle. 

2.13 Repeat Problem 2.12 for a particle olmass 5 x 10-'" kg. 

2.14 An automubile has a mass of 1500 kg. What is thc uncertainty in the velocity (in 
miles per hour) when its center of mass is located with an uncertainty no greater than 
I cm'! 

2.15 ( u )  The uncertainty in the position of an electron is no greater than I A. Determine the 
minimum uncertainty in  its momentum. (b)  The electron's energy is measured with an 
uncertainty no greater than 1 eV Determine the minimum uncertainty in the rime aver  
which the measurement is made. 

Section 2.2 Schrodinger's Wave Equation 

2.16 Assume that Ul, (x, 1) and U12(x r )  are solutions of the one-dimensional time- 
dependent Schrodinger's wave equation. (n)  Show that W, + *> is a solution. (b) Is 
W, - *? a solution of the Schrodingcr's equation in general'! Why or why not? 

2.17 Consider the wave function Q(x, t )  = A(sin n ~ j e - ~ " "  for -1 5 x 5 + I .  
DetermineA so thatS1, W ( r  t)12dx = 1. 

2.18 Consider the wave function W(X. I )  = A(sin n n . r ) e J U '  for 0 5 x 5 I. Determine 
A so that 1;: W(x, 1)l'd.r = I 

2.19 The solution to Schrodinger's wave cquation for aparticular situation is given by 
$(x) = a. e """ Determine the probability of finding the particle between the 
follawing limits: ( a )  0 .r 5 no/4, (b) a0/4 5 x 5 un/2. and ( c )  0 5 s 5 no. 

Section 2.3 Applications of Schrodinger's Wave Equation 

2.20 An electron in free space is described by a plane wave given by Q(x.  I)  = ~ e ~ ' " ~ " " '  
where k = 1.5 x lo9 m-' and w = 1.5 x 10'' rad/s. (0) Determine the phasc 
velocity of the plane wave. (h) Calculate the wavelength, momentum, and kinetic 
energy (in eV) of the electron. 

2.21 An electron is traveling in the negative .r direction with a kinetic energy of 0.015 eV. 
Write the equation of a plane wave that describes thic parlicle. 

2.22 An electron is hound in a one-dimensional infinite potential well with a width of 
100 A. Determine the electron energy levels for n = 1.2. 3. 

2.23 Aune-dimensional infinite potential well with a width of 12 A contains an electron. 
(a) Calculate the first two energy levels that the electron may occupy. (b) If an 
electron d n p  Irorn the second energy level to the first, what is the wavelength of 21 

photon that might be emitted" 

2.24 Consider a panicle with mass of I0  mg in an infinite potential well 1.0 cm wide. (a) If 
the energy of the particle is 10 mJ. calculate the value of n for that state. (h) What is 



Problems 

Incident panicles v,,p- 
Figure 2.11 I Potential function Figure 2.12 1 Potential 
for Problem 2.26. function for Problem 2.30 

the kinetic energy of the ( n  + I )  state? (c )  Would quantum effects be observable far 
this particle? 

2.25 Calculate the lowest energy lexjel for a neutron in a nucleus, by treating it as if i t  were 
in an inlinite potential wcll of width equal to 10- 'h. Compare this with the lowest 
energy level for an electron in the same infinite potential well. 

2.26 Consider the particle in the infinite potential well as shown in Figure 2.1 I .  Derive and 
sketch the wave functions corresponding to the four lowest energy levels. (Du not 
normalize the wave functionq.) 

*2.21 Consider a three-dimensional infinite potential well. The potential function is given 
by V ( x )  = 0 for 0 < x < a. 0 < ,v < o. 0 c z < n.  and V ( x )  = oj elsewhere. Start 
with Schrodinger's wave equation, use the separation of variables technique, and 
show that the energy is quantized and is given by 

wheren,=1,2,3  ,.... n , = l , 2 , 3  ,..., n : = 1 , 2 , 3  , . . . .  
'2.28 Consider a free electron bound within a two-dimensional infinite potential well 

defined by V  = 0 fur 0 < x < 25 A, 0 < y < 50 A, and V  = oo elsewhere. 
Determine the expression for the allowed electron energies. 

Describe any similarities and any differences to the results of the one-dimensional 
infinite potential well. 

2.29 Consider a proton in a one-dimensional inhnite potential well shown in Figure 2.5. 
(a) Derive the expression for the allowed energy states of the proton. (b) Calculate the 
energy difference (in units of eV) between the lowest possible energy and the next 
higher energy state for (i) u = 4 A, and (it) a = 0.5 cm. 

2.30 For the step potential function shown in Figure 2.1 2, assume that E > Vo and that 
particles are incident from the +x direction traveling in the -x direction. (0) Write 
the wave solutions for each region. (b)  Derive expressions for the transmission and 
reflection coefficients. 

2.31 Consider the penetration of a step potential function uf height 2.4 eV by an electron 
whose energy is 2.1 eV. Determine the relative probability of finding the electron at 
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the distance (a)  12 A beyond the barrier, and (h)  48 A beyond the banier, compared to 
the probability of finding the incidenl panicle at the barrier edge. 

2.32 Evaluate the transmission coefficient for an electron of energy 2.2 eV impinging on a 
potential barrier of height 6.0 eV and thickness 1 0 " '  m. Repeat the calculation for a 
barrier thickness of 10-' m. Assume that Equation (2.62) is valid. 

2.33 (uj Estimate the tunneling probability of aparticle with an effective mass of 0.067mo 
(an electron in gallium arsenide), where mo is the mass of an electron, tunneling 
through a rectangular potential barrier of height V, = 0.8 eV and width 15 A. The 
panicle kinetic energy is 0.20 eV. (b)  Repeat part (a) if the effective mass of the 
panicle is 1 .08mii (an electron in silicon). 

2.34 A proton attempts to penetrate a rectangular potential barrier of height 10 MeV and 
thickness 10 '' m. The particle has a total energy of 3 MeV. Calculate the probability 
that the particle will penetrate the potential barrier. Assume that Equation (2.62) is 
valid. 

*2.35 An electron with energy E is incident on n rectangular potential barrier as shown in 
Figure 2.8. The potential harrier is of width a and height Vo >> E. ( a )  Write the fonn 
of the wave function in each of the three regions. (bj For this geometry, determine 
what coefficient in the wave function solutions is zero. (r) Derive the expression for 
the transmission coefficient for the electron (tunneling probability). (d) Sketch the 
wave function for the electron in each region. 

*2.36 A potential function is shown in Figure 2.13 with incident particles coming from -m 
with a total energy E > V 2  The constants k are defined as 

Assume a special case for which kza = 2nn, n = 1, 2. 3 ,  . . . . Derive the expres- 
sion, in terms of the constants, k , ,  kl.  and k 3 ,  for the transmission coefficient. The 
transmission coefficient is defined as the ratio of the flux of particles in region 111 to 
the incident Hun in region 1. 

*2.37 Consider the one-dimensional potential function shown in Figure 2.14. Assume the 
rolal energy of anelectron is E < V,,. (a) Write the wave solutions that apply ineach 

Incident panicles E > Vl -er J v o I I  I l l ,  
x = 0 ~T = o r = O X = U  

Figure 2.13 1 Potenual function for Figure 2.14 1 Potential function for 
Problem 2.36. Problem 2.37. 



Reading L ~ s t  

region. (b)  Write the set of equations that result from applying the boundary conditions. 
(c) Show explicitly why, or why not. the energy levels oftheelectron are quantized. 

Section 2.4 Extensions of the Wave Theory to Atoms 

2.38 Calculate the energy of the elecmn in the hydrogen atom (in units of eV) for the first 
four allowed energy levels. 

2.39 Show that the most probable value of the radius r for thc 1s electron in a hydrogen 
atom is equal to the Bohr radius a,. 

2.40 Show that the wave function for $,,n given by Equation (2.71) is a solution to the 
differential equalion given by Equation (2.64). 

2.41 What property do H. Li, Na, and K have in common? 
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Introduction to the Quantum 
Theory of Solids 

P R E V I E W  

I n the last chapter, we applied quantum mechanics and Schrodinger's wave equa- 
tion to determine the behavior of electrons in the presence of various potential 
functions. We found that one important characteristic of an electron bound to an 

atom or bound within a finite space is that the electron can take on only discrete val- 
ues of energy; that is, the energies are quantized. We also discussed the Pauli exclu- 
sion principle, which stated that only one electron is allowed to occupy any given 
quantum state. In this chapter, we will generalize these concepts to the electron in a 
crystal lattice. 

One of our goals is to determine the electrical properties of a semiconductor ma- 
terial, which we will then use to develop the cunent-voltage characteristics of semi- 
conductor devices. Toward this end, we have two tasks in this chapter: to determine 
the properties of electrons in a crystal lattice, and to determine the statistical charac- 
teristics of the very large number of electrons in a crystal. 

To start, we will expand the concept of discrete allowed electron energies that 
occur in a single atom to a band of allowed electron energies in a single-crystal solid. 
First we will qualitatively discuss the feasibility of the allowed energy bands in a 
c rywl  and then we will developa more rigorous mathematical derivation of this the- 
ory using Schrodinger's wave equation. This energy band theory is a basic principle 
of semiconductor material physics and can also be used to explain differences in 
electrical characteristics between metals, insulators, and semiconductors. 

Since current in a solid is due to the net flow of charge, it is important to deter- 
mine the response of an electron in the crystal to an applied external force, such as an 
electric field. The movement of an electron in a lattice is different than that of an elec- 
tron in free space. We will develop a concept allowing us to relate the quantum me- 
chanical behavior of electrons in a crystal to classical Newtonian mechanics. This 
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analysis leads to a parameter called the electron effective mass. As part of this devel- 
opment, we will find that we can define a new particle in a semiconductor called a 
la~le. The motion of both electrons and holes gives rise to currents in a semiconductor. 

Because the number of electrons in a semiconductor is very large, it is impossi- 
ble to follow the motion of each individual particle. We will develop the statistical 
behaviur of electrons in a crystal, noting that the Pauli exclusion principle is an im- 
portant factor in determining the statistical law the electrons must follow. The result- 
ing probability function will determine the distribution of electrons among the avail- 
able energy states. The energy band theory and the probability function will be used 
extensively in the next chapter, when we develop the theory of the semiconductor in 
equilibrium. 

3.1 1 ALLOWED AND FORBIDDEN ENERGY BANDS 
In the last chapter, we treated the one-electron, or hydrogen, atom. That analysis 
showed that the energy of the bound electron is quantized: Only discrete values of 
electron energy are allowed. The radial probability density for the electron was also 
determined. This function gives the probability of finding the electron at a particular 
distance from the nucleus and shows that the electron is not localized at a given 
radius. We can extrapolate these single-atom results to a crystal and qualitatively de- 
rive the concepts of allowed and forbidden energy bands. We can then apply quan- 
tum mechanics and Schrodinger's wave equation to the problem of an electron in a 
single crystal. We find that the electronic energy states occur in hands of allowed 
Elates that are separated by forbidden energy bands. 

3.1.1 Formation of Energy Bands 

Figure 3.la shows the radial probability density function for the lowest electron 
energy state of the single, noninteracting hydrogen atom, and Figure 3 . lb  shows the 
same probability curves for two atoms that are in close proximity to each other. The 
wave functions of the two atom electrons overlap, which means that the two electrons 

Figurn 3.1 1 (a) Probability density function of an isolated hydrogen atom. (b) Overlapping probability density 
functions of two adjacent hydrogen atoms. (c) The splitting of the n = I state. 
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will interact. This interaction or perturbation results in the discrete quantized energy 
level splitting into two discrete energy levels, schematically shown in Figure 3 .k .  
The splitting of the discrete state into two states is consistent with the Pauli exclusion 
principle. 

A simple analogy of the splitting of energy levels by interacting particles is the 
following. Two identical race cars and drivers are far apart on a race track. There is 
no interaction between the cars, so they both must provide the same power to 
achieve a given speed. However, if one car pulls up close behind the other car, there 
is an interaction called draft. The second car will be pulled to an extent by the lead 
car. The lead car will therefore require more power to achieve the same speed, since 
it is pulling the second car and the second car will require less power since it is 
being pulled by the lead car. So there is a "splitting" of power (energy) of the two 
interacting race cars. (Keep in mind not to take analogies too literally.) 

Now, if we somehow start with a regular periodic arrangement of hydrogen- 
type atoms that are initially very far apart, and begin pushing the atoms together, the 
initial quantized energy level will split into a band of discrete energy levels. This ef- 
fect is shown schelnatically in Figure 3.2, where the parameter ro represents the 
equilibrium interatomic distance in the crystal. At the equilibrium interatomic dis- 
tance, there is a band of allowed energies, but within the allowed band, the enrrgies 
are at discrete levels. The Pauli exclusion principle states that the joining of atoms 
to form a system (clystal) does not alter the total number of quantum states regard- 
less of size. However, since no two electrons can have the same quantum number. 
the discrete energy must split into a band of energies in order that each electron can 
occupy a distinct quantum state. 

We have seen previously that, at any energy level, the number of allowed quan- 
tum states is relatively small. In order to accommodate all of the electrons in a crys- 
tal, then, we must have many energy levels within the allowed hand. As an example, 
suppose that we have a system with 10" one-electron atoms and also suppose that, 
at the equilibrium interatomic distance, the width of the allowed energy band is I eV. 
For simplicity, we assume that each electron in the system occupies a different en- 
ergy level and, if the discrete energy states are equidistant, then the energy levels ate 
separated by lo-'' eV. This energy difteerence is extremely small, so that fur all prac- 
tical purposes, we have a quasi-continuous energy distribution through the allowed 

5 I 
ro Interatomic distance --C 

Figure 3.2 I The spl~ttlng of an energy 
state lnto a band of allowed energles 
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energy band. The fact that 10-'%V 1 5  d very small d~fference between two energy 
Ftatec can be seen from the following example. 

Objective I EXAMPLE 3.1 

To calculate the change in kinetic energy of an electron when the velocity changes by a small 
value. 

Consider an electron traveling at a velocity of 10' cmls Assume the velocity increases by 
avalueof I c d s .  The increase i n  kinetic energy is given by 

Let u? = u, + Au. Then 

u; = ( v ,  + A")' = u: + 2 u ,  Au + (Au)' 

But A u  << u, ,  so we have that 

I Solution 
Substituting the number into this equation, we obtain 

AE = (9.11 x 10~')(10')(0.01) = 9 . I l  x 1 

which may be converted to units of elcctron volts as 

I Comment 
A change in velocity of I c d s  compared with lo7 c d s  results in a change in energy of 
5.7 x eV, which is orders of magnitude larger than the change in energy of 10-Iy eV be- 
tween energy states in the allowed energy hand. This example serves to demonstrate that a dif- 
ference in adjacent energy states of 1 0 ' '  eV is indeed very small, XI that the discrete energies 
wilhin an allowed band mav be treated as a quasi-continuous distribution. 

Consider again a regular periodic arrangement of atoms, in which each atnm 
now contains more then one electron. Suppose the atom in this imaginary crystal 
contains electrons up through the n = 3 energy level. If the atoms are initially very 
far apart, the electrons in adjacent atoms will not interact and will occupy the discrete 
energy levels. If these atoms are brought closer together, the outermost electrons in 
then = 3 energy shell will begin to interact initially, s o  that this discrete energy level 
will split into a band of allowed energies. If the atoms continue to move closer to- 
gether, the electrons in the n = 2 shell may begin to interact and will also split into a 
band of allowed energies. Finally, if the atoms become sufficiently close together, the 
innermost electrons in then = I level may interact. so that this energy level may also 
split into a band of allowed energies. The splitting of these discrete energy levels is 
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I 
'0 Interatomic distance ---+ 

Figure 3.3 I Schematic showing the splitting of three energy states 
into allowed hands of energies. 

. .. - . . .. 
\ Six allowed levels 

at rams energy 

Two allowedlevels 
at same energy k' s P 

2 electrons n = 3 

(4 

Figure 3.4 I (a) Schematic ofan isolated silicon atom. (hJ The splitting oithe 3s and 3p states uf silicon into the 
allowed and furbidden energy bands. 
(From Shockicy [ S l .  J 

qualitatively shown in Figure 3.3, If the equilibrium interatomic distance is ro. then 
we have bands of allowed energies that the electrons may occupy separated by bands 
of forbidden energies. This energy-band splitting and the formation of allowed and 
forbidden bands is the energy-band theory of cingle-crystal materials. 

The actual hand splitting in a crystal is much more complicated than indicated 
in Figure 3.3. A schematic representation of anisolated silicon atom is shown in Fig- 
ure 3.4a. Ten of the fourteen silicon atom electrons occupy deep-lying energy levels 
close to the nucleus. The four remaining valence electrons are relatively weakly bound 
and are the electrons involved in chemical reactions. Figure 3.4b shows the hand split- 
ting of silicon. We need only consider the n = 3 level for the valence electrons, since 
the first twoenergy shells are completely full andare tightly bound to thenucleus. The 
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3s state comesponds to n = 3 and I = 0 and contains two quantum states per atom. 
This state will contain two electrons at T = 0 K. The 3p state corresponds t o n  = 3 
and I = 1 and contains six quantum states per atom. This state will contain the re- 
maining two electrons in the individual silicon atom. 

As the interatomic distance decreases, the 3s and 3p states interact and overlap. 
At the equilibrium interatomic distance, the bands have again split. hut now four 
quantum states per atom are in the lower hand and four quantum state5 per atom are in 
the upper hand. At absolute zero degrees, electrons are in the lowest energy state, so 
that all states in the lower band (the valence hand) will he full and all states in the 
upper band (the conduction band) will be empty. The handgap energy E, between the 
top of the valence hand and the bottom of the conduction hand is the width of the for- 
bidden energy band. 

Wehavediscussedqualitatively how and why bands of allowed and forbidden en- 
ergies are formed in a crystal. The formation of these energy bands is directly related 
to the electrical characteristics of the crystal, as we will see later in our discussion. 

*3.1.2 The Kronig-Penney Model 

In the previous section, we discuhsed qualitatively the spitting of allowed electron 
energies as atoms are hrought together to form a crystal. The concept of allowed and 
forbidden energy bands can hc developed more rigorously by considering quantum 
mechanics and Schrodinger's wave equation. It may be easy for the reader to "get 
lost" in the following derivation, but the result forms the basis for the energy-band 
theory of semiconductors. 

The potential function of a hingle, noninteracting, one-electron atom is shown in 
Figure 3 . h  Also indicated on the figure are the discrete energy levels allowed for 
theelectson. Figure 3.5b shows the same type of potential function for the case when 
ieveral atoms are in close proximity arranged in a one-dimensional array. The po- 
tential functions of adjacent atoms overlap, and the net potential function for this 
case is shown in Figure 3 . 5 ~ .  It is this potential function we would need to use in 
Schrodinger's wave equation to model a one-dimensional single-crystal material. 

The solution to Schrodinger's wave equation, for this one-dimensional single- 
crystal lattice, is made more tractable by considering a simplrs potential function. 
Figure 3.6 is the one-dimensional Kronig-Penncy model of the periodic potential 
function, which is used to represent a one-dimensional single-crystal lattice. We need 
to solve Schrodinger's wave equation in each region. As with previous quantum me- 
chanical problems, the more interesting solution occurs for the case when E < Vo, 
which corresponds to a particle being bound within the crystal. The electrons are 
contained in the potential wells, but we have the possibility of tunneling between 
wells. The Kronig-Penney model is an idealized periodic potential representing a 
one-dimensional single crystal. but the results will illustrate many of the important 
features of the quantum behavior of electrons in ;I periodic lattice. 

To obtain the solution to Schrodinger's wave equation, we make use of a math- 
ematical theorem by Bloch. The theorem states that all one-electron wave functions, 

'Indicates sections that can he skipped without lobs of continuity 
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Figure 3.5 1 id) Potential function if a single isolated 
atom. (b) Overlapping potential functions of adjacent 
atoms. (c) Net potential function of a one-dimensional 
single crystal. 

Figure 3.6 1 The one-dimensional periodic potential 
function of the Kronig-Penney model. 
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for problems involving periodically varying potential energy functions, must be of 
the form 

*(x) = u(x)ejk" (3.1) 

The parameter k is called a constant of motion and will be considered in more dc- 
tail as we develop the theory. The function u(x) is a periodic function with period 
(a  t b). 

We stated inchapter 2 that the total solution to the wave equation is the product 
of the time-independent solution and the time-dependent solution, or 

wh~ch may he written as 

IV(r. t i  = u(.x)e~'*""-'"l""' (3.3) 

This traveling-wave solution represents the motion of an electron in a single-crystal 
material. The amplitude of the traveling wave is a periodic function and the parame- 
ter k is also refemed to as a wave number. 

We can now begin to determine a relation between the parameter k, the total en- 
ergy E, and the potential Vo. If we consider region I in Figure 3.6 (0 < x -c a )  in 
which V ( x )  = 0, take the second derivative of Equation (3.1), and substitute this re- 
sult into the time-independent Schrodinger's wave equation given by Equation (2.13). 
we ohtain the relation 

d2ul(x) dui(x) 
dx2 
---- +2jk---  - (k' - c ? ) ~ , ( ~ )  = o 

dx 

The function u,( .r)  is the amplitude of the wave function in region I and the parame- 
ter a is defined as 

Consider now a specific region 11, -b < r < 0. in which V(x) = &I. and apply 
Schrodinger's wave equation. We obtain the relation 

where u~(x) theampl~tude of the wave t u n c t m  in reglon I1 We may define 

so that Equation (3.6) may be written as 

Note that fromEquation (3.7). if E > Vo, the parameter /3 is real, whereas if E c: Vo, 
then +8 is imaginary. 
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The solution to Equation (3.41, for region 1, is of the form 

u l ( + )  = A ~ ' ( ' - ~ ) I  + Be-i'"+"'\ for (0 < x < u )  (3.9) 

and the solution to Equation (3.8), for region 11, is of the form 

u z ( x )  = Ceic@-kl.' + De-jc8+"' for (-b < r < 0 )  (3.10) 

Since the potential function V ( x )  is everywhere finite, both the wave function $ ( I )  

and its first derivative a@( . r ) /ax  must he continuous. This continuity condition im. 
plies that the wave amplitude function u ( x )  and its first derivative a u ( x ) / a x  must 
also he continuous. 

If we consider the boundary at x = 0 and apply the continuity condition to the 
wave amplitude, we have 

u l ( 0 )  = uz(O) (3.11) 

Substituting Equations (3 .9 )  and (3 .10)  into Equation (3.11 j, we obtain 

A + B - C - D = O  (3.12) 

Now applying the condition tkdt 

we obtain 

( u k ) A - ( u + k ) R - ( B - k ) C + ( p + k j D = O  (3.14) 

We have considered region I as 0 < x c u and region I1 as b < .r < 0. The 
periodicity and the continuity condition mean that the function u .  as a i u .  is 
equal to the function uz,  as x -t -b. This condition may be written as 

u l ( u )  = u ? ( - 6 )  (3.15) 

Applying the solutions for u l ( x )  and m ( x )  to the boundary condition in Equa- 
tion (3.15) yields 

~ ~ j l w - k k 7  + ~ ~ - j c m + k ) o  ce-j!P-kih - ~ ~ j ( P + k ) h  - - 0 (3.16) 

The la\t houndary condition is 

which gives 

k ) ~ ~ J ( " - h ' "  - (@ + k ) ~ ~ - / ( a + k J o  - ( p  - k)ce-l(B-k)b 

+ (0 + ~ ) D ~ J ' W ~ ~  = o (3.18) 

We now have four homogeneous equations, Equations (3.12). (3. IJ), (3.16).  and 
( 3 . 1 8 )  with four unknowns as a result of applying the four boundary conditions. In a 
set of simultaneous, linear, homogeneous equations, there is a nontrivial solution if, 
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and only if, the determinant of the coefficients is zero. In our case, the coefficients in 
question are the coefficients of the parameters A,  B, C, and D. 

The evaluation of this determinant is extremely laborious and will not he con- 
sidered in detail. The result is 

Equation (3.19)relates the parameter k to the total energy E (through the parameter a )  
and the potential function Vo (through the parameter 8).  

As we mentioned, the more interesting solutions occur for E c Vo, which ap- 
plies lo the electron bound within the crystal. From Equation (3.7), the parameter f l  
is then an imaginary quantity. We may define 

P = J Y  (3.20) 

where y is areal quantity. Equation (3.19) can he written in terms of y as 

Equation (3.21) does not lend itself to an analytical solution, but must be solved 
using numerical or graphical techniques to obtain the relation between k,  E. and V,. 
The solution of Schrodinger's wave equation for a single bound particle resulted in 
discrete allowed energies. The solution of Equation (3.21) will result in a band of 
allowed energies. 

To obtain an equation that is more susceptible to a graphical solution and thus 
will illustrate the nature of the results, let the potential barrier width b i 0 and the 
barrier height Vo i oo, but such that the product bVo remains finite. Equation (3.21) 
then reduces to 

+ cosau = cos ka 

We may define a parameter P' as 

Then, finally, we have the relation 

Equation (3.24) again gives the relation between the parameter k,  total energy E 
(rhrough the parameter a),  and the porentinl barrier bVo. We may note that Equa- 
tion (3.24) is not a .solution <fSclzrodinger S wave equation but ~ i w s  rhe condirirn~.~ 
forwhich Schrodinger's wave equation will have a solution. If we assume the crystal 
is infinitely large, then k in Equation (3.24) can assume a continuum of values and 
must be real. 
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3.1.3 The k-Space Diagram 

To begin to understand the nature of the solution, initially consider the special case 
for which fll = 0. In this case P' = 0. which corresponds to a free particle since 
there are no potential barriers. From Equation (3.24). we have that 1 

cosaa  = cos ka 

cr = k 

Smce the potentla1 1s equal to zero, the total energy E 1s equal to the k ~ n e t ~ c  energy,] 
so that, from Equat~on (3 5 ) .  Equat~on (3  26) may be wrltten as 

h 

where p is the particle momentum. The constant of the motion parameter k is related ( 
to the particle momentum for the free electron. The parameter k is also referred to as 
a wave number. 

We can also relate the energy and momentum as 

Figure 3.7 shows the p;uabolic relation of Equation (3.28) between the energy Eand 
momentum p for the free particle. Since the momentum and wave number are lin- 1 
early related, Figure 3.7 is also the E versus k curve for the free panicle. 

We now want to consider the relation between E and k from Equation (3.24) for 
the particle in the single-crystal lattice. As the parameter P' increases, the particle 
becomes more tightly bound to the potential well or atom. We may define the left side 
of Equation (3.24) to be afunction f (uo). so that 

Figure 3.7 I The pnraholic E versus k 
curve for the free electron. 



3.1  Allowed and Forbidden Energy Bands 

F i g u ~  3.8 1 A plot of (a) the first term in Equation (3.29). (h) the second term in Equation 
(3.29). and (c) the entire f (aa )  function. The shaded areas show the allowed values of 
(uo) corresponding to real values oi k .  

Figure 3.8a is a plot of the first term of Equation (3.29) versus a u .  Figure 3.8h shows 
aplot of the cos a u  term and Figure 3 . 8 ~  is the sum of the two terms, or f (au)  

Now from Equation (3.24). we also have that 

.f ( a a )  = cos ka (3.30) 

For Equation (3.30) to he valid, the allowed values of the f (aa )  function must be  
bounded between + I  and -1.  Figure 3 . 8 ~  shows the allowed values o f f  (aa)  and 
the allowed values of aa in the shaded areas. Also shown on the figure are the values 
of ka from the right side of Equation (3.30) which correspond to the alluwed values 
off  @a).  

The parameter a is related to the lutal energy E of the particle through Equa- 
tion (3.51, which is a' = 21n E / h 2 .  A plot of the energy E of the particle as a function 
of the wave number k can be generated from Figure 3 . 8 ~ .  Figure 3.9 shows this plot 
and shows the concept of allowed energy bands for the particle propagating in the 
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Figure 3.9 1 The E versus k diagram generated from 
Figure 3.8. The allowed energy bands and forbidden 
energy bandgaps are indicated. 

crystal lattice. Since the energy E has discontinuities, we also have the concept of 
forbidden energies for the particles in the crystal. 

EXAMPLE 3.2 ( Objective 

To determine the lowest allowed energy bandwidth. 
Assume that the coefficient P' = 10 and that the potential width u = 5 A 

8 Solution 
To find the lowest allowed energy handwidth. we need to find the difference in ua values as 
ka changes from 0 to K (see Figure 3 .8~) .  For ku = 0. Equation (3.29) becomes 

By trial and error, we find uo = 2.628 rad. We see that for ka = n. u n  = n. 
For uu = n. we have 

For uic = 2.628. we find that El  = 1.68 x lo-'' J = 1.053 eV. The allowed energy bdnd- 
width is thrn 

A E  = EI  - E, = 1.50 - 1.053 = O w e V  



3.1 Allowed and Forbfdden Energy Bands 

C o m m e n t  
We see from Figure 1 . 8 ~  that, as the energy increases, the widths of the allowed bands increase 
from this Ktonig-Penney model. 

TEST YOUR UNDERSTANDING 

E3.1 Using the parameters given in Example 3.2, determine the width ( in  eV) of the 
forbidden energy band that exists at ko = n (see Figure 3.8~). (Aa 6 1 2  = 3 V  ' ~uv )  

Consider again the right side of Equation (3.24), which is the function cos ka. 
The cosine function is periodic so that 

cos ka = cos (ku + 2 n n )  = cos (ka - 2nn)  (3.31) 

where n is a positive integer. We may consider Figure 3.9 and displace portions of the 
curve by 2n. Mathematically, Equation (3.24) is still satisfied. Figure 3.10 shows 
how various segments of the curve can be displaced by the 2 n  factor. Figure 3. I 1  
shows the case in which the entire E versus k plot is contained within -n/a < 
k < n/a. This plot is referred to as a reduced k-space diagram, or a reduced-zero 
representation. 

We noted in Equation (3.27) tkdt for a free electron, the particle momentum and 
the wave number k are related by p = hk. Given the similarity between the free 

Figure 3.101 Tne E versus k diagram showing 2 n  
displacements of several sections of allowed energy Figure 3.11 1 The F versus k dlagram 

In the reduced-7one reorcbentatlon bands 
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electron solution and the results of the single crystal shown in Figure 3.9, the para- 
meter hk in a single crystal is referred to as the c i y t a l  momentrrm. This parameter is 
not the actual momentum of the electron in the crystal, but is a constant of the mo- 
tion that includes the crystal interaction. 

We have been con.siderin,q the Kronig-Penney model, which is a one- 
dimensional periodic pofential function used to model a single-crytal lattice. The 
principle result of this analysis, sofa,: is that electrons in the c y s f a l  occupy certain 
allowed energy bands and are exr.luded,from the forbidden energy bundr. For real 
three-dimensional single-crystal materials, a similar energy-band theory exists. We 
will obtain additional electron properties from the Kronig-Penney model in the next 
sections. 

3.2 1 ELECTRICAL CONDUCTION IN SOLIDS 
Again, we are eventually interested in determining the current-voltage characteris- 
tics of semiconductor devices. We will need to consider electrical conduction in 
solids as it relates to the band theory we have just developed. Let us begin by con- 
sidering the motion of electrons in the various allowed energy hands. 

3.2.1 The Energy Band and the Bond Model 

In Chapter 1, we discussed the covalent bonding of silicon. Figure 3.12 shows a two- 
dimensional representation of the covalent bonding in a single-crystal silicon lattice. 
This figure represents silicon at T = 0 K i n  which each silicon atom is surrounded by 
eight valence electrons that are in their lowest energy state and are directly involved 
in the covalent bonding. Figure 3.4b represented the splitting of the discrete silicon 
energy states into bands of allowed energies as the silicon crystal is formed. At 
T = 0 K, the 4N states in the lower band, the valence band, are filled with the va- 
lence electrons. All of the valence electrons schen~atically shown in Figure 3.12 are 
in the valence band. The upper energy band, the conduction band, is completely 
empty at T = 0 K. 

Figure 3.12 1 Two-dimensional 
representation of the covalent bonding 
in a semiconductor at T = 0 K.  



3.2 Electrical Conduction in Sollds 

As the temperature increases above 0 K, a few valence band electrons may gain 
enough thermal energy to break the covalent bond and jump into the conduction 
band. Figure 3.13a shows a two-dimensional representation of this bond-breaking 
effect and Figure 3.13b. a simple line representation of the energy-band model, 
shows the same effect. 

The semiconductor is neutrally charged. This means that, as the negatively 
charged electron breaks away from its covalent bonding position, a positively 
charged "empty state" is created in the original covalent bonding position in the va- 
lence band. As the temperature further increases, more covalent bonds are broken, 
more electrons jump to the conduction hand, and more positive "empty states" are 
created in the valence band. 

We can also relate this hond breaking to the E versus k energy bands. 
Figure 3.14a shows the E versus k diagram of the conduction and valence bands at 

Conducttun 
e- 

band - 
t \ 

Vdlence + 
band 

Figure 3.13 1 (a) Two-dimensional representation of the bredlung of a covalent bond. 
(b) Corresponding line representation of the energy band and the generation of a 
negative and positive charge with the breaking of a covalent bond. 

Figure 3.14 I The E versu, k diagram ut  the conduillon and valence bands of a 
sem~conductor at (a) T = 0 K and (b) T > 0 K 
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T = 0 K. The energy states in the valence band are completely full and the states in 
the conduction band are empty. Figure 3.14b shows these same bands for T > 0 K, 
in which some electrons have gained enough energy to jump to the conduction band 
and have left empty states in the valence band. We are assuming at this point that no 
external forces are applied so the electron and "empty state" distributions are sym- 
metrical with k. 

J 

3.2.2 Drift Current 

Current is due to the net flow of charge. If we had a collection of positively charged 
ions with a volume density N (cm-') and an average drift velocity L V , ~  ( c d s ) ,  then the 
drift current density would be 

J = qNu,i A/cm2 (3.32) / 
If, instead of considering the average drift velocity, we considered the individual ion 
velocities, then we could write the drift current density as 

where ui is thevelocity of the ith ion. The summation in Equation (3.33) is taken over 
a unit volume so that the current density J is still in units of A/cm2. 

Since electrons are charged particles, a net drift of electrons in the conduction 
band will give rise to a current. The electron distribution in the conduction band, as 
shown in Figure 3.14b. is an even function of k when no external force is applied. Re- 
call that k for a free electron is related to momentum so that, since there are as many 
electrons with a + I k  value as there are with a -Ikl value, the net drift current den- / 
sity due to these electrons is zero. This result is certainly expected since there is no 
externally applied force. 

If aforce is applied to a particle and the particle moves, it must gain energy. 'Ibis1 
effect is expressed as 

d E =  F d x =  F u d t  (3.34) 1 
where F  is the applied force, dx is the differential distance the particle moves, v is the I 
velocity, and d E  is the increase in energy. I f  an external force is applied to the elec- 
trons in the conduction band, there are empty energy states into which the electrons 
can move: therefore, because of the external force, electrons can gain energy and a net 
momentum. The electron distribution in the conduction band may look like that 
shown i n  Figure 3.15, which implies that the electrnns have gained a net momentum. 

We may write the drift current density due to the motion of electnms as 

where e is the magnitude of the electronic charge and n is the number of electrons 
per unit volume in the conduction hand. Again, the summation is taken over a unit 
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Figure 3.15 1 The asymmetric distrihudon 
of electrms in the E versus k diagram 
when an external force is applied. 

volume so the current density is Alcm2. We may note from Equation (3.35) that the 
current is directly related to the electron velocity; that is, the current is related to ho& 
well the electron can move in the crystal. 

3.2.3 Electron Effective Mass 

The movement of an electron in a lattice will, in general, be different from that of an 
electron in free space. In addition to an externally applied force, there are internal 
forces in the crystal due to positively charged ions or protons and negatively charged 
electrons, which will influence the motion of electrons in the lattice. We can write 

where F,,,I, F,,,. and Fin, are the total force, the externally applied force, and the in- 
ternal forces, respectively, acting on a particle in a crystal. The parameter a is the 
acceleration and m is the rest mass of the particle. 

Since it is difficult to take into account all of the internal forces, we will write the 
equation 

FeXt = m*a (1.37) 

where theacceleration a is now directly related to the external force. The parameter 
m*.  called the effective mass, takes into account the panicle mass and also takes into 
account the effect of the internal forces. 

To use an analogy for the effective mass concept, consider the difference in mo- 
lion between a glass marble in a container filled with water and in a container filled 
with oil. In general, the marble will drop through the water at a faster rate than through 
the oil. The external force in this example is the gravitational force and the internal 
forces are related to the viscosity of the liquids. Because of the difference in motion 
of the marble in these two cases, the mass of the marble would appear to be different 
in water than inoil. (As with any analogy, we must be careful not to he too literal.) 

We can also relate the effective mass of an electron in a crystal to the E versus k 
curves, such as was shown in Figure 3.1 1. In a semiconductor material, we will be 
dealing with allowed energy hands that are almost empty of electrons and other 
energy bands that are almost full of electrons. 
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To begin, consider the case of a free electron whose E versus k curve was sho 

in Figure 3.7. Recalling Equation (3.28). the energy and momentum are related 
E = p2/2m = ?i2k'/2m, where m is the mass of the electron. The momentum an 
wave number k are related by p = Rk. If we take the derivative of Equation (3.28 
with respect to k ,  we obtain 

Relating momentum to velocity, Equation (3.38) can be written as 

I d E - P -  -- - - - u  
h dk m 

where v  is the velocity of the particle. The first derivative of E with respect to k is 
lated to the velocity of the panicle. 

If we now take the second derivative of E with respect to k ,  we have 

We may rewrite Equation (3.40) as - 
The second derivative of E with respect to k is inversely proportional to the mass of 
the particle. For the case of a free electron, the mass is a constant (nonrelativistic 
effect), so the second derivative function is a constant. We may also note from Fig- 
ure 3.7 that d 2 E / d k Z  is a positive quantity, which implies that the mass of the elec- 
tron is also a positive quantily. 

If we apply an electric field to the free electron and use Newton's classical equa- 
tion of motion, we can write 

where a is the acceleration, E is the applied electric field, and e ih thc 
the electronic charge. Solving for the acceleration, we have 

-eE a = -  
m 

The motion of the free electron is in the opposite direction to the applied electric field 
because of the negative charge. 

We may now apply the results to the electron in the bottom of an allowed ener 
band. Consider the allowed energy band in Figure 3.16% The energy ncar the bottom o 
this energy band may be approximated by a parabola, just as that of a free particle. We 
may write 4 

E - E, = ~ , ( k ) '  (3.411 
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I Parabolic I 
I 
I approximation 

Figurn 3.16 1 (a) The conduction band in reduced k space, and the parabolic 
approximation. (b) The valence band in reduced k space, and the parabolic 
approximation. 

Theenergy E, is the energy at the bottom of the band. Since E > E,, the parameter 
Cl is a positive quantity. 

Taking the second derivative of E with respect to k from Equation (3.44), we 
obtain 

We may put Equation (3.45) in the form 

1 d2E 2C1 
- 

hZ dk2 h2 (3 46) 

Comparing Equatlon (3 46) w ~ t h  Equat~on (3 41). wemay equate h2 /2c ,  to the mass 
ofthe particle. However, the curvature of the curve in Figure 3.16a will not, in gen- 
eral, be the same as the curvaturc of the free-particle curve. We may write 

wherem* is called the effective mass. Since C I  > 0, we have that m* > 0 also. 
The effective mass is a parameter that relates the quantum mechanical results to 

the classical force equations. In most instences, the electron in the bottom of the con- 
duction band can be thought of as a classical particle whose motion can be modeled 
by Newtonian mechanics, provided that the internal forces and quantum mechanical 
properties are taken into account through the effective mass. If we apply an electric 
field to the electron in the bottom of the allowed energy band, we may write the 
acceleration as 

where m,' is the effective mass of the electron. The effective mass m: of the electron 
near the bottom of the conduction band is a constant. 
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3.2.4 Concept of the Hole 

In considering the two-dimensional representation of the covalent bonding shown in 
Figure 3.13a, a positively charged "empty state" was created when a valence electron 
was elemted into the conduction band. For T > 0 K, all valence electrons may gain 
thermal energy; if a valence electron gains asmall amount of thermal energy, it may hop 
into the empty state. The movement of a valence electron into the empty state is equiv- 
alent to themovement of the positively charged empty state itself. Figure 3.17 shows the 
movement of valence electrons in the crystal alternately filling one empty state and cre 
ating a new empty state, a motion equivalent to a positive charge moving in the valence 
band. The ciystal now has a second equally important charge carrier that can give rise to 
a current. This charge carrier is called a hole and, as we will see, can also be thought of 
as a classical particle whose motion can be modeled using Newtonian mechanics. 

The drift current density due to electrons in the valence band, such as shown in 
Figure 3.14b, can be written as 

where the summation extends over all filled states. This summation is inconvenient 
since it extends over a nearly full valence band and takes into account a very large 
number of states. We may rewrite Equation (3.49) in the form 

If we consider a band that is totally full, all available states are occupied by elec- 
trons. The individual electrons can be thought of as moving with a velocity as given 
by Equation (3.39): 

The band is symmetric in k and each state is occupied so thal, for every electron with 
a velocity v l ,  thereis acorrespondingelectron with avelocity - I t .  Since the bandis 
full, the distribution of electrons wilh respect to k cannot he changed with an 
externally applied force. The net drift current density generated from a completely full 

Figurr 3.17 1 Visualization of the movement of a hule in a semiconductor. 



band, then, is zero, or 

We can now write the drift current density from Equation (3.50) for an almost 
full band as 

J = +e u, 
'(Cmp,, 1 

where the u, in the summahon is the 

associated with the empty state. Equation (3.52) is entirely equivalent to placing a 
positively charged particle in theempty states and assuming all other states in the hand 
are empty, or neutrally charged. This concept is shown in Figure 3.18. Figure 3.18a 
shows the valence band with the conventional electron-filled states and empty states, 
while Figure 3.18b shows the new concept of positive charges occupying the original 
empty states. This concept is consistent with the discussion of the positively charged 
"empty state" in the valcnce band as shown in Figure 3.17. 

The ui in the summation of Equation (3.52) is related to how well this positively 
charged panicle moves in the semiconductor. Now consider an electron near the top of 
the allowedenergy band shown in Figure 3.16b. The energy near the top of the allowed 
energy band may again he approximated by a parabola so that we may write 

( E  - E,) = -C2(k)? (3.53) 

The energy E,, is theenergy at the top ofthcenergy band. Since E i E,, for electrons 
in this band, then the parameter Cl must be a positive quantity. 

Taking the second derivative of E with respect to k from Equation (3.53)' we 
obtain 

We may rearrange this equat~on so that 

Figure 3.18 1 (a) Valence band w ~ t h  convent~onal electron-hlled sates and cmpty 
states (b) Concept of posltlre chdrges occupying thc anginal cmply state\ 
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Comparing Equation (3.55) with Equation (3.41), we may write 

I d2E -2C2 1 
- - 

h2 dk2 hZ m* 
(3.56) 1 

where m* is again an effective mass. We have argued that C2 is a positive quantity, 
which now implies that ~ n *  is a negative quantity. An electron moving near the topo 
an allowed energy band behaves as if it has anegative mass. 

We must keep in mind that the effective mass parameter is used to relate quan- 
tum mechanics and classical mechanics. The attempt to relate these two theories 
leads to this strange result of a negative effective mass. However, we must recall that 
solutions to Schrodinger's wave equation also led to results that contradicted classi- 
cal mechanics. The negative effective mass is another such example. 

In  discussing the concept of effective mass in the last section, we used an analogy 
of marbles moving through two liquids. Now consider placing an ice cube in the cen- 
ter of a container filled with water: the ice cube will move upward toward the surface 
in a direction opposite to the gravitational force. The ice cube appears to have a nega- 
tive effective mass since its acceleration is opposite to the external force. The effec- 
tive mass parameter takes into account all internal forces acting on the particle. 

If we again consider an electron near the top of an allowed energy band and use 
Newton's force equation for an applied electric field, we will have 

However, m' is now a negative quantity, so we may write 

An electron moving near the top of an allowed energy band moves in the same di- 
rection as the applied electric field. 

The net motion of electrons in a nearly full band can be described by consider- 
ing just the empty states, provided that a positive electronic charge is associated with 
each state and that the negative of m* from Equation (3.56) is associated with each 
state. We now can model this band as having particles with a positive electronic 
charge and a positive effective mass. The density of these panicles in the valence 
band is the same as the density of empty electronic energy states. This new panicle 
is the hole. The hole, then, has a positive effective mass denoted by mg and a posi- 
tive electronic charge, so it will move in the same direction as an applied field. 

3.2.5 Metals, Insulators, and Semiconductors I 
Each crystal has its own energy-band suucture. We noted that the splitting of the 
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some basic differences in electrical characteristics caused by variations in band 
structure by considering some simplified energy bands. 

There are several possible energy-band conditions to consider. Figure 3.19a 
shows an allowed energy band that is completely empty of electrons. If an electric 
field isapplied, there are no particles to move, so there will be no current. Figure 3.19b 
shows another allowed energy band whose energy states are completely full of elec- 
uons. We argued in the previous section that a completely full energy band will also 
not give rise to acunent. Amaterial that has energy bands either completely empty or 
completely full is an insulator. The resistivity of an insulator is very large or, con- 
versely, the conductivity of an insulator is very small. There are essentially no charged 
panicles that can contribute to a drift current. Figure 3 . 1 9 ~  shows a simplified energy- 
band diagram of an insulator. The bandgap energy E,  of an insulator is usually on the 
orderof3.5 to6eVor larger, so that at room temperaturc, there areessentially no elec- 
trons in the conduction band and the valence band remains completely full. There are 
very few thermally generated electrons and holes in an insulator. 

Figure 3.20a shows an energy band with relatively few electrons near the bottom 
of the band. Now, if an electric field is applied, the electrons cangain energy, move to 

Allowed 
energy 
band 
(empty) 

Valence 
h ,nd 

Figure 3.19 1 Allowed energy bands 
showing (a) an empty band, (b) a 
completely full band. and (c) the bandgap 
energy between the two allowed bands. 
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. . " " '. . : . r. , , . . l i l l r n ~ ~ t  -. .. , .  '..' 
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Figure 3.20 1 Allowed energy bands 
showmg (a) an almost empty band. (b) an 
almwt tull band, and (c) the bandgap 
energy between the two allowed bands 
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Figure 3.21 1 Two possible energy bands oC a metal showing (a) a panially filled band 
and (b) overlapping allowed encrgy bands. 

higher energy states, and move through the crystal. The net flow of charge is a current. 
Figure 3.20b shows an allowed energy band that is almost full of electrons. which 
means that we can consider the holes in this band. If an electric field is applied, the 
holes can move and give rise to a current. Figure 3 . 2 0 ~  shows the simplified energy- 
band diagram for this case. The bandgap energy may be on the order of I eV. This 
energy-band diagram represents a semiconductor for T > 0 K. The resistivity of a 
semiconductor, as we will see in the next chapter, can be controlled and varied over 
many orders of magnitude. 

The characteristics of a metal include a very low resistivity. The energy-hand di- 
agram for a metal may be in one of two forms. Figure 3.2 la  shows the case of a par- 
tially full band in which there are many electrons available for conduction, so that the 
material can exhibit a large electrical conductivity. Figure 3.21b shows another pos- 
sible energy-band diagram of a metal. The hand splitting into allowed and forbidden 
enerEy bands is a complex phenomenon and Figure 3.21b shows a case in which the 
conduction and valence bands overlap at the equilibrium interatomic distance. As in 
the case shown in Figure 3.21a, there are large numbers of electrons as well as large 
numbers of empty energy states into which the electrons can move, so this material 
can also exhibit a very high electrical conductivity. 

3.3 1 EXTENSION TO THREE DIMENSIONS 
The basic concept of allowed and forhidden energy bands and the basic concept of 
effective mass have been developed in the last sections. In this section, we will ex- 
tend these concepts to three dimensions and to real crystals. We will qualitatively 
consider particular characteristics of the three-dimensional crystal in terms of the E 
versus k plots, bandgap energy, and effective mass. We must emphasize that we will 
only briefly touch on the basic three-dimensional concepts; therefore, many details 
will not be considered. 

One problem encountered in extending the potential function to a three- 
dimensional crystal is that the distance between atoms varies as the direction through 
the crystal changes. Figure 3.22 shows a face-centered cubic structure with the [I001 
and [I 101 directions indicated. Electrons traveling in different directions encounter 
different potential patterns and therefore different k-space boundaries. The E versus 
k diagrams are in general a function of the k-space direction in a crystal. 
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Ill01 
direction 

Figure 3.22 1 The (100) plane o f a  
face-centered cubic crystal showing 
the [I001 and [ I  101 directions. 

3.3.1 The k-Space Diagrams of Si and GaAs 

Figure 3.23 shows an E versus k diagram of gallium arsenide and of silicon. These 
simplilied diagrams show the basic properties considered in this text, but do not 
show many of the details more appropriate for advanced-level courses. 

Note that in place of the usual positivc and negative k axes, we now show two 
different crystal directions. The E versus k diagram for the one-dimensional model 
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Figure 3.23 I Energy band structures of (a) GaAs and (b) Si 
(Fmm Sze /111.J 
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was symmetric ink so that no new information is obtained by displaying the negative 
axis. It is normal practice to plot the 11001 direction along the normal +k axis and to 
plot the 11 111 portion of the diagram so the +k points to the left. In the case of dia- 
mond or zincblende lattices, the maxima in the valence band energy and minima in 
the conduction band energy occur at k = 0 or along one of these two direction*. 

Figure 3.23a shows the E versus k diagram for GaAs. The valence band maxi- 
mum and the conduction hand minimum both occur at k = 0. The electrons in the 
conduction band tend to settle at the minimum conduction band energy which is at 
k = 0. Similarly, holes in the valence band tend to congregate at the uppennost 
valence band energy. In GaAs, the minimum conduction band energy and maximum 
valence band energy occur at the same k value. A semiconductor with this property is 
said to be a d~rec t  bandgap semiconductor; transitions between the two allowed bands 
can take place with no change in crystal momentum. This direct nature has significant 
effect on the optical properties of the material. GaAs and other direct bandgap mate- 
rials are ideally suitedfor use in semiconductor lasers and other optical devices. 

Thc E versus k diagram for silicon is shown in Figure 3.23b. The maximum in 
the valence band energy occurs at k = 0 as before. The minimum in the conduction 
hand energy occurs not at k = 0,  hut along the [I001 direction. The difference be- 
tween the minimum conduction band energy and themaximum valence band energy 
is still defined as the bandgap energy Ex.  A semiconductor whose maximum valence 
band energy and minimum conduction band energy do not occur at the same k value 
is called an irldirect bandgap semiconductor. When electrons make a transition be- 
tween the conduction and valence bands, we must invoke the law of conservation of 
momentum. A transition in an indirect bandgap material must necessarily include an 
interaction with the crystal so that crystal momentum is conserved. 

Germanium is also an indirect bandgap material, whose valence band maximum 
occurs at k = 0 and whose conduction band minimum occurs along the [ 11 11 direc- 
tion. GaAs is a direct bandgap semiconductor, but other compound  semiconductor^,^ 
such as Gap and AIAs, have indirect bandgaps. 

3.3.2 Additional Effective Mass Concepts 

The curvature of the E versus k diagrams near the minimum of the conduction ban 
energy is related to the effective mass of the electron. We may note tiom Figure 3. 
that the curvature of the conduction band at its minimum value for GaAs is larg 
than that of silicon, so the effective mass of an electron in the conduction hand o 
GaAs will be smaller than that in silicon. 1 

For the one-dimensional E versus k diagram, the eftective mass was defined by 
Equation (3.41) as l /m'  = I/??' . d 2 ~ / d k 2 .  A complication occurs in the effectiv 
mass concept in a real crystal. A three-dimensional crystal can be described by t 
k vectors. The curvature of the E versus kdiagram at the conduction band minimum ma 
not be the same in the three k directions. We will not consider the details of the vario 

device calculations. 

1 
effective mass parameters here. In later sections and chapters, the effective mass pxamJ 
eters used in calculations will be a land of statistical average that is adequate for most 



3.4 Density of States Functlon 

3.4 1 DENSITY OF STATES FUNCTION 
As we have stated. we eventually wish to describe the current-voltage charactcris- 
tics of semiconductor devices. Since current is due to the flow of charge. an im- 
portant step in the process is to determine the number of electrons and holes in the 
semiconductor that will he available for conduction. The number of carriers that 
can contribute to the conduction process is a function of the number of available 
energy or quantum states since, by the Pauli exclusion principle, only one electron 
can occupy a given quantum state. When we discussed the splitting of energy lev- 
els into bands of allowed and forbidden energies, we indicated that the band of al- 
lowed energies was actually made up of discrete energy levels. We must determine 
the density of these allowcd energy states as a function of energy in order to calcu- 
late the electron and hole concentrations. 

3.4.1 Mathematical Derivation 

To determine the density of allowed quantum states as a function of energy, we need 
to consider an appropriate mathematical model. Electrons are allowed to move re l a  
tively freely in the conduction band of a semiconductor, but are confined to the crys- 
tal. As a first step, we will consider a free electron confined to a three-dimensional 
infinite potential well, where the potential well represents the crystal. The potential 
of the infinite potential well is defined as 

O < : < r r  

V ( x ,  y, ;) = ca elsewhere 

where the crystal is assumed to be a cube with length a .  Schrodinger's wave equation 
in three dimensions can be solved using the separation of variables technique. 
Extrapolating the results from the one-dimensional infinite potential well, we can 
show (see Problem 3.21) that 

where n,, n!, and n; are positivc integers. (Negative values of n,, nI, and n; yield 
the same wave function, except for the sign, as the positive integer values, resulting 
in the same probability function and energy, so the negative integers do not represent 
a different quantum state.) 

We can schematically plot the allowed quantum states in k space. Figure 3.24a 
shows a two-dimensional plot as a function of k, and k , .  Each point represents an 
allowed quantum state corresponding to various integral values o fn ,  and n ) .  Positive 
and negative values of k,, k , ,  or k,  have the same energy and represent the same 
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Figure 3.24 1 la) A twa-dimencional army ol allowed quantum stales in 
k space. (b) The positive one-eighth of the sphrrical k space. 

energy state. Since negative values of k , ,  k , ,  or k: do not represent additional quao- 
tum states, the density of quantum states will be determined by considering only the 
positive one-eighth of the spherical k space as shown in Figure 3.24b. 

The distance between two quantum states in the k ,  direction, for exaniple, is 
given by 

Generalizing this result to three dimensions, the volume Vk of a single quantum stateis 

We can now determine [he density of quantum states in k space. A differential vol- 
ume in k space is shown in Figure 3.24b and is given hy 4 n k 2  d k ,  so the differential 
density of quantum states in k space can he written as I 

The tirst factor, 2, takes into account the two spin states allowed for each quantu 
stale; the next factor, $, takes into account that we are considering only the quantu 
states for positive values of k , ,  k , ,  and k,.  The factor 4 n k 2  dl ,  is again the 
tial volume and the factor ( x / a ) ' i s  the volume of one quantum state. 
may he simplified to 



3.4 Dens~ty of States Functlon 

Equation (3.64) gives the density of quantum states as a function of momentum, 
through the parameter k. We can now determine the density of quantum states as a 
function of energy E. For a free electron, the parameters E and k are related by 

The differential dk  is 

Then, substituting the expressions for k2 and d k  into Equation (3.64). the number of 
energy states between E and E + d E  is given by 

Since h = h/2n, Equation (3.67) becomes 

Equation (3.68) gives the total number of quantum states between the energy E and 
E t d E  in the crystal space volume of u3. If we divide by the volume a 3 ,  then we will 
obtain the density of quantum states per unit volume of the crystal. Equation (3.68) 
then becomes 

The density of quantum states is a function of energy E. As the energy of this free 
electron becomes small, the number of available quantum states decreases. This den- 
sity function is really a double density, in that the units are given in terms of states 
per unit energy per unit volume. 

Objective I EXAMPLE 3.3 

To calculate the density of mtes per unit volume over a particular energy range. 
Consider the density of states for a free elcctmn given by Equation (3.69). Calculate the 

density of states per unit volume with energies between 0 and I eV. 
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rn Solution 
The volume density of quantum states, from Equation (3.69). is 

I r~ 4 ~ ( 2 m ) ' / '  , 1'" f i d E  
h3 I 

The density of states is now I 

rn Comment 
The density of quantum states is typically a large number An effective density of states i n  a 
semiconductor, as we will see in the following sections and in the next chapter, is also a l a r ~ e  
number, but is usually less than the dcnsity of atoms in the semiconductor crystal. 

3.4.2 Extension to Semiconductors 

In the last section, we derived a general expression for the density of allowed eled 
tron quantum states using the model of a free electron with mass m bounded in a 
three-dimensional infinite potential well. We can extend this same general model to 
a semiconductor to determine the density of quantum states in the conduction band 
and the density of quantum states in the valence band. Electrons and holes are con- 
fined within the semiconductor crystal so we will again use the basic model of the in-  
finite potential well. 

The parabolic relationship between energy and momentum of a free electron 
was given in Equation (3.28) as E = p 2 / 2 m  = R'k2/2rn. Figure 3.16a showed the 
conduction energy band in the reduced k space. The E versus k curve near k = O a t  .. 
the bottom of the conduction band can be approximated as a parabola, so 
write 

fi2k2 
E = E , + -  

2m; 

where E, is the bottom edge of the conduction band and rnb is the electron effecti 
mass. Equation (3.70) may be rewritten to give 

p k 2  
E - E , = -  

2m; 



3.4 Density of States Function 

The general form of theE versus k relation for an electron in the bottom of a con- 
duction band is the same as the free electron, except the mass is replaced by the effec- 
tivemass. We can then think of the electron in the bottom of the conduction band as 
beinga"freen electron with its own particular mass. The right side of Equation (3.71) 
is of the same form a the right side of Equation (3.28), which was used in the deriva- 
tion of the density of states function. Because of this similarity, which yields the 
"free" conduction electron model, we may generalize the free electron results of 
Equation (3.69) and write the density of allowed electronic energy states in the con- 
duction band us 

Equation (3.72) is valid for E , E, . As the energy of the electron in the conduction 
band decreases, the number of available quantum states also decreases. 

The density of quantum states in the valence hand can be obtained by using the 
same infinite potential well model, since the hole is also confined in the semicon- 
ductor crystal and can be treated as a "free" particle. The effective mass of the hole 
is m;. Figure 3.16b showed the valence energy band in the reduced k space. We 
may also approximate the E versus k curve near k = 0 by a parabola for a "free" 
hole, so that 

fi2k2 
E = E,. - - 

2m; 

Equation (3.73) may be rewritten to give 

Again, the right side of Equation (3.74) is of the same form used in the general 
derivation of the density of states function. We may then generalize the density of 
states function from Equation (3.69) to apply to the valence band, so that 

Equation (3.75) is valid for E 5 E,.. 
We have argued that quantum states do not exist within the forbidden energy 

band, so g ( E )  = 0 for E,  c E c E,. Figure 3.25 shows the plot of the density of 
quantum states as a function of energy. If the electron and hole effective masses were 
equal, then the functions g,(E) and g , , (E )  would be symmetrical about the energy 
midway between E, and E,., or  the midgilp energy. Emidgap. 
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Figure 3.25 I The density of energy 
states in the conduction band and the 
density of energy states in the valence 
band as a function of energy. 

i 
I TEST YOUR UNDERSTANDING 

E3.2 Determine the total numher of energy states in silicon between E, and E, + kT at 

T = 300K. (,-"J h l O l  X Z l ' Z  
E3.3 Determine the total number of energy states in silicon between E ,  and E, - kT at 

T = 300 K. (,-"a x l O l  X Z6'L 'sub') 

3.5 1 STATISTICAL MECHANICS 
In dealing with large numbers of particles, we are interested only in the statistical be- 
havior of the group as a whole rather than in the behavior of each individual particle. 
For example, gas within a container will exert an average pressure on the walls of the 
vessel. The pressure is actually due to the collisions of the individual gas molecules 
with the walls, but we donot follow each individual molecule as it collides with the 
wall. Likewise in a crystal, the electrical characteristics will be determined hy the 
statistical behavior of a large number of electrons. 

3.5.1 Statistical Laws I 
In determining the statistical behavior of particles, we must consider the laws that the 
particles obey. There are three distribution laws determining the distribution of par- 
ticles among available energy states. 

1 



One distribution law is the Maxwell-Boltzmann probability function. In this case, 
the panicles are considered to be distinguishable by being numbered, for example, from 
I to N. with no limit to the number of particles allowed in each energy state. The 
behavior of gas molecules in a container at Fairly low pressure is an example of this 
distribution. 

A second distribution law is the Bose-Einstein function. The panicles in this case 
are indistinguishable and, again, there is no limit to the number of particles permitted 
in each quantum state. The behavior of photons, or black body radiation, is an exam- 
ple of this law. 

The third distribution law is the Fermi-Dirac probability function. In this case, 
the particles are again indistinguishable, but now only one particle is permitted in 
each quantum state. Electrons in a crystal obey this law. In each case, the particles are 
assumed to be noninteracting. 

3.5.2 The Fermi-Dirac Probability Function 

Figure 3.26 shows the ith energy level with g; quantum states. A maximum of one 
particle is allowed in each quantum state by the Pauli exclusion principle. There are 
g, ways of choosing where to place the tirst panicle, (g;  - 1 )  ways of choosing 
where to place the second particle, (g;  - 2) ways of choosing where to place the 
third particle, and so on. Then the total number of  ways of arranging Ni particles in 
the ith energy level (where N, _i ~r,) is 

This expression includes all permutations of the N, particles among themselves. 
However, since the particles are indistinguishable, the Ni ! number of permuta- 

tions that the particles have among themselves in any given arrangement do not 
count as separate arrangements. The interchange of any two electrons. for example, 
does not produce a new arrangement. Therefore, the actual number of independent 
ways of realizing a distribution of Ni particles in the ith level is 

Figure 3.26 1 The ith energy level wrth g, 
quantum %ate? 

. . . . . .  
. 
8,  

Quantum states 
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EXAMPLE 3.4 I Objective 

To determine the possible number of ways of realizing a particular distribution. 
Let y, = N, = 10. Then (g, - NJ! = 1. 

W Solution 
Equation (3.77) becomes 

gi ! lo! = - =  1 
N ; ! ,  - N !  lo! 

Comment 
If we have I0 particles to be arranged in 10 quantum states, there is only one possible arrange- 
ment. Each quantum state contains one particle. I 

EXAMPLE 3.5 ( Objective 

To again determine the possible number of ways of realizing a particular distribution. 
Lety,= IOandN, = 9. In thiscasey, N , =  1 sothat(g, N , ) !  = 1 .  

W Solution 
Equatlon (3.77) becomes 

Comment 
In this case, if we have 10 quantum states and 9 particles. there is one empty quantum state. 

There are 10 possible arrangements, or positions, for the one empty state. 

Equation (3.77) gives the number of independent ways of realizing a distribution 
of N; particles in the ith level. The total number of ways of arranging (N,, N2, N,, . . . , 
N,) indistinguishable particles among n energy levels is the product of all distribu- 
tions, or 

The parameter W is the total number of ways in which Nelectrons can be arranged in 
this system, where N = x:=, N, is the total number of electrons in the system. We 
want to find the most probable distribution, which means that we want to find the 
maximum W. The maximum W is found by varying N; among the E; levels, which 
vanes the distribution, but at the same time, we will keep the total number of parti- 
cles and total energy constant. 



3.5 Statistlca Mechanics 

We may write the most probable distribution function as 

where E F  is called the Fermi energy. The number density N ( E )  is the number of 
particles per unit volume per unit energy and the function g ( E )  is the number of 
quantum states per unit volume per unit energy. The function . f*,(E) is called the 
Fenni-Dirac distribution or probability function and gives the probability that a 
quantum state at the energy E  will be occupied by an electron. Another interpretation 
of the distribution function is that ~ F ( E )  is the ratio of filled to total quantum states 
at any energy E. 

3.5.3 The Distribution Function and the Fermi Energy 

To begin to understand the meaning of the distribution function and the Fcrmi 
energy, we can plot the distribution function versus energy. Initially, let T = 0 K and 
consider the case when E < E F .  The exponential term in Equation (1.79) becomes 
e x p [ ( E  - E F ) / k T I  -t exp (-a') = 0. The resulting distribution function is 
f F ( E  < E F )  = I .  Again let T = 0 K and consider the case when E > E F .  The 
exponential term in the distribution function becomes exp[(E - E F ) J k T )  + 
exp (+m) + tm. The resulting Fermi-Dirac distribution function now becomes 
fF(E > E F )  = 0. 

The Fermi-Dirac distribution function for T  = 0 K is plotted in Figure 3.27. This 
result shows that, for T = 0 K, the electrons are in their lowest possible energy states. 
The probability of a quantum state being occupied is unity for E c Ef and the proba- 
bility of a state being occupied is zero for E > EF.  All electrons have energies below 
the Fermi energy at T  = 0 K.  

Figure 3.28 shows discrete energy levels of a particular system as well as [lie 
number of available quantum states at each energy. If we assume, for this case, that 

0 f ,  
E- f ,  

Figure 3.28 1 Discrete energy states 
Figure 3.27 1 The Fermi probability and quantum states for a particular 
function Venus energy for T  = 0 K .  system at T = 0 K. 
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the system contains 13 electrons. then Figure 3.28 shows how these electrons are dis- 
tributed among the various quantum states at T = 0 K. The electrons will he in the 
lowest possible energy state, so the probability of a quantum state being occupied in 
energy levels El  through Eq is unity, and the probability of a quantum state being oc- 
cupied in energy level E5 is zero. The Fermi energy, for this case, must be above El 

but less than E s .  The Fermi energy determines the statistical distribution of electrons 
and does not have to correspond to an allowed energy level. 

Now consider a case in which the density of quantum states g ( E )  is a continu- 
ous function of energy as shown in Figure 3.29. If we have No electrons in this sys- 
tem, then the distribution of these electrons among the quantum states at T = 0 K is 
shown by the dashed line. The electrons are in the lowest possible energy state so that 
all states below E F  are tilled and all states above E F  are empty. If g(E) and No are 
known for this particular system, then the Fermi energy E F  can be determined. 

Consider the situation when the temperature increases above T = O K. Elec- 
trons gain a certain amount of thermal energy so that some electrons can jump to 
higher energy levels, which means that the distribution of electrons among the avail- 
able energy states willchange. Figure 3.30 shows the same discrete energy levels and 
quantum states as in Figure 3.28. The distribution of electrons among the quantum 
states has changed from the T = 0 K case. Two electrons from the E4 level have 
gained enough energy to jump to E5, and one electron from E i  has jumped to El. As 
the temperature changes, the distribution of electrons versus energy changes. 

The change in the electron distribution among energy levels for T > O K can be 
seen by plotting theFermi-Dirac distribution function. If we let E = EF and T > OK, 
then Equation (3.79) becomes 

The probability of a state being occupied at E = E F  is f .  Figure 3.31 shows the 
Fermi-Dirac distribution function plotted for several temperatures, assuming the 
Fermi energy is independent of temperature. 

Figure 3.29 I Density of quantum states and electrons in a 
continuous energy system at T = 0 K. 

U V U W U W V U U  E5 

t !  
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A €1 

Figure 3.30 1 Discrete energy states and 
quantum states for the same system 
shown in Figure 3.28 iw T > 0 K. 



Figure 3.31 1 The Ferm~ probab~hty functmn verau\ energy 
for d~fferent temperatures 

We can see that for temperatures above absolute zero, there is a nonzero proba- 
bility that some energy states above E F  will be  occupied by electrons and some 
energy states below EF will be empty. This result again means that some electrons 
have jumped to higher energy levels with increasing thermal energy. 

Objective 1 E X A M P L E  3.6 

To calculate the probability that an enerzy state above E F  is uccupied by an electron. 
Let T = 300 K. Determine the probability that an energy level 3kT above the Fermi e n  

ergy is occupied by an electron. 

W Solution 
From Equatian (3.79). we can write 

which becomes 

I Comment 
At energies above E,. , the probability of a state being occupied by an electron can become sig- 
nificantly less than unity. or the ratio of electrons to available quantum states can he quite 
small. 

TEST YOUR UNDERSTANDING 1 
E3.4 Assume the Fermi energy level is 0.30 eV below the conduction band energy. 

(a )  Determine the probability of a state being occupied by an elcctron at E,. 
(h )  Repeat part (a)  for an energy state at E, i k T .  Assume T = 300 K. 
Lp-01 X E V E  (4)  i s  01 X ZE'6 (D) 'SUV] 
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E3.5 Assume the Fermi energy level is 0.35 eV above the valence band energy. 

(0) Determine the probability of a state being empty of an electron at E,. (b)  
pan ( a )  for an energy state at E ,  - LT. Assumc T  = 300 K .  
IL-0I X 86P ( 9 )  ' v .  01 X SE'I ("1 'SUVI 

We can see from Figure 3.31 that the probability of an energy above El. 
occupied increase5 as the temperature increases and the probability of a state helo 
EF being empty increases as the temperature increases. 

EXAMPLE 3.7 I Objective 

Tn determine the temperature at which there is a 1 percent probability that an energy stated 
empty. 

Assume that thc Fcrmi energy level for a particular material is 6.25 eV 
trons in this material follow the Fermi-Dirac distribution function. Calculate the trmperatu 
at which there is a I percent probability that a slate 0.30 eV below the Fermi 
not contain an electron. 

rn Solution 
The probability that a statc is empty is 

Then 

Solving for k T .  we find k T  = 0.06529 eV, so that thc tcmpcrature is T  = 756 K 

Comment 
The Ferml probab~l~ty functlon 1s a strong functmn ot temperature 

TEST YOUR UNDERSTANDING 

E3.6 Repeat Exercise E3.4 for 7'= 400 K. [s-OI X OZ'9 (9 )  '?-01 X 69'1 (0) 'SUVI 
E3.7 Repeat Exercise E3.5 for T =  400 K .  [S-OI x YP1 (Y) '<-fJl X Y6E (") "Vl 

We may note that the probability of a state a distance dE above El. 
occupied is the same a s  the probability of a state a distance d E  below EF 
empty. The function f r  ( E )  is symmetrical with the function I - f f ( E )  about t 
Fermi energy, E F .  This symmetry effect is shown in Figure 3.32 and will be us 
in the next chapter. 



Figure 3.32 1 The probahility of a slate hbzing occupied. 
/,(El, and the probability of a state heing empty, I - i ;(El 

! 

Figure 3.33 1 The Fenn-Drac probab~llty function and the 
Maxwell-Boltrmann approxmatlon 

Consider the case when E - EF >> k T .  where the exponential term in the de- 
nominator of Equation (3.79) is much greater than unity. We may neglect the I in the 
denominator, so the Femi-Dirac dihtribution function becomes 

I I 

Equation (3.80) is known as the Maxwell-Bolumann approximation, or simply the 
Boltzmann approximation. tntheFern~i-Dirac distribution function. Figure 3.33 shows 
the Femi-Dirac probability function and the Boltzmann approximation. This figure 
gives an indication of the range of energies over which the approximation is valid. 

Objective I EXAMPLE 3.8 

To determine the energy at which the Bolt7mann approximation may be considered valid. 
Calculate the energy, in terms of k T  and E F .  at which the difference between the 

Boltzmann approximation and the Fermi-Dirac function is 5 percent of the Fermi function. 
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W Solution 
We can write 

If we multlply both numerator and denominator by the 1 + exp ( ) functron, we have 

whichbecomes 

( E E , j = i T l n  - 
( 0 : ~ )  z"' 

H Comment 
As seen in this example and inFigure 3.33. the E  - E, >> kT nutatim is sumewhat mislead- 
ing. The Maxwell-Boltrmann and Fermi-Dirac functions are within 5 percent of each mithcr 
when E - E F  = 3 k T .  

The actual Boltzniann approximation is valid when e x p [ ( E  - E b ) / k T ]  >> I 
However, it is still common practice to use the E - E r  >> kT notation when apply- 
ing the Boltzmann approximation. We will use this Boltzmann approximation in our 
discussion of  semiconductors in the next chapter. 

3.6 1 SUMMARY 
Discrete allowed electron energies split into a band of allowed energies as atoms are 
brought together to form a crystal. 
The concept of allowed and forbidden energy bands was developed more rigorously 
by considering quantu~n mechanics and Schrodinger's wave equation using the 
Kronig-Penney model representing the potential function of a single crystal material. 
This result forms the basis of the ener&y band theory of semiconductors. 

H The concept of effective mass was developed. Effective mass relates the motion of a 
particle in a crystal to an externally applied force and takes into account the effect olthe 
c~ystal lattice on the motion of the particlc. 

H Two charged particles exist in a semiconductor. An electron is a negatively charged 
panicle with a positive effective mass existing at the bottom of an allowed energy band. 
A hole is a positively charged particle with a positive effective mass existing at the cop 
of an allowed energy band. 



I Tne Eversus kdiagram of silicon and gallium arsenide were given and the concept of 
direct and indirect bandgap semiconductors was discussed. 
Energies within an allowed energy band are actually at discrete levels and each contains 
a finite number of quantum states. The density per unit energy of quantum states was 
determined by using the three-dimensional infinite potential well as a model. 
In dealing with large numbers of electrons and holes, we musf consider the statistical 
behavior of these particles. The Fermi-Dirac probability function was developed. which 
gives the probability of a quantum state at an energy E of being occupied by an electron. 
The Fermi energy was defined. 

GLOSSARY OF IMPORTANT TERMS 
allowed energy band A band or range of energy levels that an electron in a crystal is al- 

lowed to occupy baied on quantum mechanics. 

density of states function The density of available quantum states as a functiun o l  energy, 
given in units of number per unit energy per unit volume. 

electron effective mass The parameter that relates the acceleration of an electron in the con- 
duction band of a crystal 11) an external force: a parameter that takes into account the effect 
of internal forces in the crystal. 

Fermi-Dirac probability function The function describing the statistical distribution of 
electrons among available energy states and the probability that an allowed energy slate is 
occupied by an electron. 

f emi  energy In the simplest definition, the energy below which all states are filled with 
electrons and above which all states are empty at T = 0 K. 

forbidden energy band A hand or  range of energy levcls that an electron in a crystal is not 
allowed to occupy based on quantum mechanics. 

hole The positively charged "particle" associated with an empty state in the top of the va- 
lence band. 

hole effective mass The parameter that relates the acceleration of a hole in the valence band 
of a crystal to an applied external force (a positive quantity); a parameter that takes into ac- 
count the effect of internal forces in a crystal. 

k-spacediagram The plot of electronenergy in a crystal versus k, where kis the momentum- 
related constant of the motion that incorporates the crystal interaction. 

Kmnig-penney model The mathematical model of a periodic potential function reprrsenl- 
ing a one-dimensional single-crystiil lattice by a series of periodic step functions. 

~ a ~ ~ ~ l l - ~ ~ [ t ~ ~ ~ ~ ~  approximation The condition in which the energy is several kT 
above the Fermi energy or several kT below the Fermi energy so that the Fermi-Dirac 
probability function can be approximated by a simple exponential function. 

Pauli exclusion principle The principle which states that no two electrons can occupy the 
same quantum state. 

CHECKPOINT 
After studying t h ~ s  chapter, the reader should have the abdity to: 

Discuss the concept of allowed and forbidden energy bands in a single crystal both 
qualitatively and more rigorously from the results of using the Kronig-Penney model 
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Discuss the splitting of energy bands in silicon. 
State the definition of effective mass from the E versus k diagram and discuss its 
meaning in terms of the movement of a particle in a crystal. 
Discuss the concept of a hole. 
Qualitatively, in terms of energy bands, discuss the difference between a metal, 
insulator, and semiconductor 
Discuss the effective density of states function. 
Understand the meaning of the Femi-Dirac distribution function and the Fenni energy. 

REVIEW QUESTIONS 
1. What is the Kronig-Penney model'' 

2. State two results of using the Kronig-Prnney model with Schrodinger's wave equation. 

3. What is effcctive mass? 

4. What is a direct bandgap semiconductor? What is an indirect bandgap semiconductor? 

5. What is the meaning of the density of states function'! 

6. What was the mathematical modelused in deriving the density of states function? 

7. In general, what is the relation between density of states and energy? 

8. What is the meaning of the Fermi-Dirac probability function? 

9. What is the Fermi energy? 

PROBLEMS 

Section 3.1 Allowed and Forbidden Energy Bands 

3.1 Consider Figure 3.4b. which shows the energy-band splitting of silicon. If the 
equilibrium lattice spacing were to change by a small amount. discuss how you would 
expect the electrical properties of silicon to change. Determine at what p i n t  the 
material would behave like an insulator or like a metal. 

3.2 Show that Equations (3.4) and (3.6) are derived from Schrodinger's wave equation. 
using the fom~ of solution given by Equation (3.3). 

3.3 Show that Equations (3.9) and (3.10) are solutions of the differential equations given 
by Equations (3.4) and (3.8). respectively. 

3.4 Show that Equations (3.12) (3.14), (3.16). and (3.18) rcsult from the boundary condiL 
tions in the Kronig-Penney model. 

- 
-- 3.5 Plot the function f (ma) = 9sinolaiaa + cosaa for 0 5 a a  5 6n. Also, gixren the 4 function t ' ( a a )  = cosku, indicate the allowed values of rru which will satisfy this 
s. equation 

-- 3.6 Repeat Problcm 3.5 for the function += f ( u a )  = 6 s inuu iaa  + cusira = cos ka 

3.7 Using Equation (3.24), show that dE/dk = 0 at k = nniu .  where n = 0, 1, 2. . . . . 
3.8 Using the parameters in Problem 3.5 and letting n = 5 A, determine the width (in eV) 

of the forbidden energy bands that exist at ( a )  ka = n. (b )  ka = 2n, ( c )  ka = 3n. and 
(d) ka = 4n. Refer to Figure 3 . 8 ~ .  
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3.9 Using the parameters in Prohlem 3.5 and letting u = 5 A. determine the width (in eV) 
of the allowed energy bands that exist for ( a )  0 < ka < n, (h) n < ku < 2n, 
(c) 2n < ko < 3ji, and ( d )  371 < ku < 417. 

3.10 Repeat Problem 3.8 using the parameters in Problem 3.6. 

3.11 Repeat Problem 3.9 using the parameters in Problem 3.6. 

3.12 The bandgap energy in a semiconductor is usually a slight function of temperature 
In some cases. the handgap energy versus temperature can be modeled by 

where E, (0) is the value of the bandgap energy at T = 0 K. For silicon. the parameter 
values are E,(O) = 1.170 eV, u = 4.73 x 1V4 eV/K and f l  = 636 K. Plot E, versus 
Tover the range 0 5 T 5 600 K. In particular, note the value at T = 300 K. 

Section 3.2 Electrical Conduction in Solids 

3.13 Two possible conduction bands are shown in the E versus k diagram given in 
Figure 3.34. State which band will result in the heavier electron effective mass; 
state why. 

3.14 Two possible valence bands are shown in the E versus k diagram given in Figure 3.35. 
State which band will result in the heavier hole effective mass; state why. 

3.15 The E versus k diagram for a particular allowed energy band is shown in Figure 3.36. 
Determine ( a )  the sign of the effective mass and (h) the dircction of velocity for a 
particle at each of thc four positions shown. 

3.16 Figure 3.37 shows the parabolic E versus k relationship in the conduction band for 
an electron in two particular semiconductor materials. Determine the effective mass 
(in units of the free electron mass) of the two electrons. 

3.17 Figure 3.38 shows the parabolic E verrus k relationship in the valence band for a hole 
in two particular semiconduutur materials. Determine thc cffective mass (in units of 
the free electron mass) of the two holes. 

3.18 The forbidden energy band of GaAs is 1.42 eV. (a )  Determine the minimum frequency 
of an incident photon that can interact with a valence electron and elevate the elrctnm 
to the conduction band. (b) What is the curespunding wavelength? 

3.19 The E versus k diagrams for a free electron (curve A) and for an electron in a 
semiconductor (curve B) are shown in Figure 3.39. Sketch (a) d E / d k  versus k and 

Figure 3.34 I Conduction Figure 3.35 1 Valence bands 
bands for Problem 3.13. for Problem 3.14. 
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Figum 336 1 Figure for Problem 3.15 

Figure 3.38 I Figure for Problem 3.17 

Figure 337 1 F~gure  for Problem 3.16. 

Figure 3.39 I Figure for Problem 3 19 

(h)  d 'E /dk2  versus k for each curve. (c)  What conclusion can you make concerning a 
comparison in effective masses for the two cases? 

Section 3.3 Extension to Three Dimensions 

3.20 The energy band diagram for silicon is shown in Figure 3.2% The minimum energy 
in the conduction b a n d i ~  in the 11001 direction. The energy in this one-dimensional 
direction near the minimum value can bc approximated by 

E = E o E l  cosn(k - k,,) 

where k,, is the value of k at the minimum energy. Determine the effective mass of the 
particle at k = ku in terms af  the equation parameters. 

Section 3.4 Density of States Function 

3.21 Starting with the three-dimensional infinite potential well function given by Equa- 
tion (3.59) and using the separation of variables technique, derive Equation (3.60). 

3.22 Show that Equation (3.69) can be derived from Equation (3.64). 

3.23 Determine the total number nf energy states in GaAs between E, and E, + k T  at 
T = 300 K .  
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3.24 Determine the total number of energy states in GaAs between E ,  and E,  - kT at 
T = 300 K .  

3.25 (a) Plot the density of states in the conduction band for silicon over the range 
E, 5 E 5 E, +0.2 eV. (6)  Repeat pan (a) for the density of states in the valence 
band over the range E ,  - 0 .2  eV 5 E 5 E,. 

3.26 Find the ratio of the effective density of states in the conduction band at E,. + kT to 
theeffective density of states in the valence band at E,  - kT.  

Section 3.5 Statistical Mechanics 

3.27 Plot the Femi-Dirac probability function, given by Equation (3.79). over the range -- - 

-0.2 5 ( E  - E , )  I 0.2 eV for (a) T = 200 K (6)  T = 300 K, and (c) T = 400 K .  [~ - < 
3.28 Repeat Example 3.4 for the case when g, = 10 and N, = 8. - 
3.29 (a) If E ,  = E, , find thc probability of a state being occupied at E = E, + kT.  (6)  If 

E F  = E , .  find the probability of a state being empty at E = E, - kT .  
3.30 Determine the probability that an energy level is occupied by an electron if the state is 

above theFermi level by ( a )  kT .  ( 6 )  5kT,  and ( c )  10kT. 
3.31 Determine the prohahility that an energy level is empty of an electron if the state is 

below the Fermi level by ( a )  kT, (b)  5kT. and (c)  lOkT. 
3.32 TheFermi energy in silicon is 0.25 eV below the conduction band energy E,. (0) Plot 

the probability of a state being occupied by an electron over the range 
E, 5 E 5 E ,  + 2kT  Assume T = 300 K .  (b)  Repeat part (a) for T = 400 K .  

333 Four electrons exist in a one-dimensional infinite potential well of width a = 10A. 
Assuming the free electron mass, what is the Fermi energy at T = 0 K .  

3.34 (a) Five electrons exist in a three-dimensional infinite potential well with all three 
widths equal to u = 10 A. Assuming the free electron mass. what is the Fermi energy 
at T = 0 K .  ( b )  Repeat pan ( a )  for 13 electrons. 

3.35 Show that the probability of an energy state being occupied A E  above the Fermi 
energy is the same as the probability of a state being empty A E  below the F e m i  level. 

3.36 (a) Determine for what energy above E,. (in terms of k T )  the Fermi-Dirac probabil- 
ity function is within I percent of the Boltzmann approximation. ( h )  Give the value of 
the probability function at this energy. 

3.37 The Femi energy lwei for a particular material at T = 300 K is 6.25 eV. The elec- 
trons in this material follow the Fermi-Dirac distribution functian. ( a )  Find the 
probability of an energy level at 6.50 eV being occupied by an electron. (6)  Repeat 
part (a) if the temperature is increased to T = 950 K .  (Assume that E F  is a constant.) 
(c )  Calculate the temperature at which there is a 1 percent probability that a state 
0.30 eV below the Fermi level will be empty of an electron. 

338 The Fermi energy for copper at T = 300 K is 7.0 eV. The electrons in copper follow 
the Femi-Dirac distribution function. (a) Find the probability of an energy level at 
7.15 eV being occupied by an electron. (6)  Repeat part (u) for T = 1000 K .  (Assume 
that EF is a constant.) (c) Repcat part ( a )  for E = 6.85 eV and T = 300 K. (d )  De- 
termine the probability of the energy state at E = E F  being occupied at T = 300 K 
and at T = 1000 K. 

3.39 Consider the energy levels shown in Figure 3.40. Let T = 300 K .  (0) If El - E F  = 
0.30eV, determine the probability that an energy state at E = El is occupied hy an 
electron and the probability that an energy state at E = E2 is empty. ( b )  Repeat pan 
(a) if E ,  - E2 = 0.40 eV. 
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Figure 3.40 1 Energy level\ for 
Problem 3.39. 

3.40 Repeat problem 3.39 for the case when E l  - Ei = I .42 eV. 

3.41 Determine the derivative with respect to energy of the Ferm-Dirac distribution 
I 

function. Plot the derivative with respect to energy for (0) T = OK, (h)  T = 300 K, 
and (c)  T = 500 K .  

3.42 Assume the Fermi energy level is exactly in the center of the bandgap energy of a 
semiconductor at T = 300 K. ( a )  Calculate the probability that an energy state in the 
bottom of the conduction band is occupied by an electron for Si, Ge. and GaAs. 
(b) Calculate the probability that an energy state in the top of the valence hand is 
empty for Si. Ge, and GaAs. 

3.43 Calculate the temperature at which there is a 10-"robability that an energy state 
0.55 eV above the Fermi energy level is occupied by an electron. 

3.44 Calculate the energy range (in eV) between f )  ( E )  = 0.95 and f ,  ( E )  = 0.05 for 
E F  = 7.0 cV and for ( a )  T = 300 K and (b) T = 500 K. 

READING LIST 
1. Kano, K. Semicond~~cror Devices. Upper Saddle River. NJ: Prentice Hall, 1998. 

2. Kittel. C. Introduction to SolidState Physics, 7th ed. Berlin: Springer-Verlag, 1993. 

3. McKelvey, J. P Solid Srufe Physics for Engineerirrg and Murerials Science. Malahar, 
FL.: Krieger, 1993. 

4. Pierret, R. F. Semiconducror Device Fundaia,ne,mlr. Reading, MA: Addison-Wesley. 
1996. 

*5. Shockley, W. Electrons and Holes in Scmiconducfor.~. New York: D. Van Nostrand. 
1950. 

6. Shur, M. Intmdwtion toElectronic Devices. New York: John Wiley and Sons, 1996. 

*7. Shur, M.  Physics of Semiconductor Devices. Englewood Cliffs. NJ: Prentice Hall, 
1990. 

8. Singh, J. Semicundnc.ror Devices: An httroduction. New York: McGraw-Hill, 1994. 

9. Singh, J. Semicunducror Devices: Busk Principles. New York: John Wiley and Sons, 
2001. 

10. Streetman, B. G., and S. Banerjee. Solid Stare Elerrronic Devices, 5th ed. Upper 
Saddle River, NJ: Prentice-Hall, 2000. 

11. Sze, S.  M. Semiconductor Devices: Physics und Technology, 2nd ed. New York: John 
Wiley and Sons, 2001 

*12. Wang, S. Fundamentals of Semiconducrov Theory mrd Device P1lpic.r. Englewrlrld 
Cliffs, NJ: Prentice Hall, 1988. 



The Semiconductor 
in Equilibrium 

P R E V I E W  

S o far, we have been considering a general crystal and applying to it the con- 
cepts of quantum mechanics in order to determine a few of the characteristics 
of electrons in a single-crystal lattice. In this chapter, we will apply these con- 

cepts specifically to a semiconductor material. In particular, we will use the density 
of quantum states in the conduction band and the density of quantum states in the va- 
lence band along with the Fermi-Dirac probability function to determine the con- 
centration of electrons and holes in the conduction and valence bands, respectively. 
We will also apply the concept of the Fermi energy to the semiconductor material. 

This chapter deals with the semiconductor in equilibrium. Equilihrium, or ther- 
mal equilibrium, implies that no external forces such as voltages, electric fields. mag- 
netic fields, or temperature gradients are actingon the semiconductor. All properties 
of the semiconductor will be independent of time in this case. Equilibrium is our 
starting point for developing the physics of the semiconductor. We will then be able 
to determine the characteristics that result when deviations from equilibrium occur, 
such as when a voltage is applied to a semiconductor device. 

We wilI initially consider the properties of an intrinsic semiconductor, that is, a 
pure crystal with no impurity atoms or defects. We will see that the electrical proper- 
ties of a semiconductor can be altered in desirable ways by adding controlled amounts 
of specific impurity atoms. called dopant atoms, to the crystal. Depending upon the 
type of dopant atom added, the dominant charge carrier in the semiconductor will be 
either electrons in the conduction band or holes in the valence band. Adding dopant 
atoms changes the distribution of electrons among the available energy states, so the 
Fermi energy becomes a function of the type and concentration of impurity atoms. 

Finally, as part of this discussion, we will attempt to add more insight into the 
significance of the Fermi energy. m 
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4.1 1 CHARGE CARRIERS IN SEMICONDUCTORS 
Current is the rate at which charge flows. In a semiconductor. two types of charge 
carrier, the electron and the hole, can contribute to a current. Since the current i n  a 
semiconductor is determined largely by the number of electrons in the conduction 
band and the number of holes in the valence hand, an important characteristic of the 
semiconductor is the density of these charge carriers. The density of electrons and 
holes is related to the density of states function and the Fermi distribution function, 
both of which we have considered.Aqualitative discussion of these relationships will : 

be followed by a more rigorous mathemeticel derivation of the thermal-equilibrium 
concentration of electrons and holes. 

4.1.1 Equilibrium Distribution of Electrons and Holes 

The distribution (with respect to energy) of electrons in the conduction band is given 
by the density of allowed quantum states times the probability that a state is occupied 
by an electrnn. This statement is written in equation form as 

where f,(E) is the Fermi-Dirac probability function and g J E )  is the density of quan- 
tum states in the conduction band. The total electron concentration per unit volume 
in the conduction band is then found by integrating Equation (4.1) over the entire 
conduction-band energy. 

Similarly, the distribution (with respect to energy) of holes in the valence bend 
is the density of allowed quantum states in the valence hand multiplied by the prob- 
ability that a state is nor occupied by an electron. We may express this as 

The total hole concentration per unit volume is found by integrating this function 
over the entire valcncc-band energy. 

To find the thermal-equilibrium electron and hole concentrations, we need to 
determine the position of the Fermi energy E, with respect to the bottom of the 
conduction-band energy E, and the top of the valence-band energy E,..To address 
this question, we will initially consider an intrinsic semiconductor. An ideal intrinsic 
semiconductor is a pure semiconductor with no impurity atoms and no lattice defects 
in the crystal (e.g., pure silicon). We have argued i n  the previous chapter that, for an 
intrinsic semiconductor at T = 0 K, all energy states in the valence band are filled 
with electrons and all energy states in the conduction band are empty of electrons. 
The Fermi energy must, therefore, be somewhere between E, and E,.. (The Fermi 
energy does not need to correspond to an allowed energy.) 

As the temperature begins to increase above 0 K, the valence electrons will gain 
thermal energy. A few electrons in the valence band may gain sufficient energy to 
jump to the conduction band. As an electron jumps from the valence band to the con- 
duction band, an empty state, or hole, is created in the valence band. In an intrinsic 
semiconductor, then, electrons and holes are createdin pairs by the thermal energy so 
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hole concentration 

Figure 4.1 1 (a) Density of states functions, Fermi-Dirac probability function, and areas representing electron and hole 
concentrations for the case when E ,  is near the midgap energy; (b) expanded view near the cunduction band energy; 
and (c) expanded view near the valence band energy. 

that the number of electrons in the conduction band is equal to the number of holes 
in the valence band. 

Figure 4.la shows aplot of the density of states function in the conduction band 
g,(E), thedensity of states function in the valence band y,.(E), and the Fermi-Dirdc 
probability function for T > 0 Kwhen Er is approximately halfway between E, and 
E,. If we assume, for the moment, that the electron and hole effective masses are 
equal, then g,(E) and g , ( E )  are symmetr~cal functions about the midgap energy (the 
energy midway between E, and E,). We noted previously that the function , f r ( E )  
for E > E F  is symmetrical to the function 1 - f r ( E )  for E c Er about the energy 
E = E F .  This also means that the function f r ( E )  for E = EF + d E  is equal to the 
function 1 - fp.(E) for E = E r  - d E .  
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Figure 4. I b is an expanded view of the plot in Figure 4.la showing fi-(E) and 

g , ( E )  above the conduction band energy E,. The product of g,(E) and fi-(E) is the 
distribution of electrons n(E) in the conduction band given by Equation (4.1). This 
product is plotted in Figure 4.la. Figure 4. lc is an expanded view of the plot in Fig' 
ure 4. la showing [ I  - f ~ ( E ) l  and g,.(E) below the valence band energy E,. Th 
product of g , ( E )  and [ l  - f ~ ( E ) 1  is the distribution of holes p (E)  in the vale d 
band given by Equation (4.2). This product is also plotted in Figure 4. la. The area 
under these curves are then the total density of electrons in the conduction band and 
the total density of holes in the valence band. From this we see that if gc(E) and 
g,(E) are symmetrical, the F e m i  energy must be at the midgap energy in order ta 
obtain equal electron and hole concentrations. If the effective masses of the electroo 
and hole are not exactly equal, then the effective density of states functions g c ( E )  
and g , ( E )  will not be exactly symmetrical about the midgap energy. The Fermi level 
for the intrinsic semiconductor will then shift slightly from the midgap energy in 
order to obtain equal electron and hole concentrations. 

4.1.2 The no andpo Equations 1 
We have argued that the Fermi energy for an intrinsic semiconductor is near midgap 
In deriving the equations for the thermal-equilibrium concentration of electrons nc 
and the thermal-equilibrium concentration of holes pu. we will not be quite so re. 
strictive. We will see later that, in particular situations, the Fermi energy can deviati 
from this midgap euergy. We will assume initially, however, that the Fermi leve 
remains within the bandgap energy. 

The equation for the thermal-equilibrium concentration of electrons may bt 
found by integrating Equation (4.1) over the conduction band energy, or 

The lower limit of integration is E, and the upper limit of integration should be t h ~  
top of the allowed conduction band energy. However, since the Fermi probabilit! 
function rapidly approaches zero with increasing energy as indicated in Figure 4.la 
we can take the upper limit of integration to be infinity. 

We are assuming that the Fermi energy is within the forhidden-energy bandgap 
For electrons in the conduction hand, we have E > E, . If (E, - EF)  >> k Z ,  the1 
(E - E F )  >> k T ,  so that the Fermi probability function reduces to the Boltzman~ 
approximation,' which is I 

'The Maxwell-Boltrrnann andFerm-Dirac distrihutioo functions are within 5 percent of each other 
when E - El % 3kT (see Figure 3.33). The >> nnuration is then somewhat misleading to indicate when 
the Boltrmann approximation is valid, although it is commonly used. 
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Applying the Boltzmann approximation to Equation (4.3), the thermal-equilibrium 
density of electrons in the conduction band is found from 

The integral of Equation (4.5) may be solved more easily by making a change of 
variable. If we let 

then Equation (4.5) becomes 

The integral is the gamma function, with a vdue of 

Then Equation (4.7) becomes 

We may define a parameter N ,  as 

so that the thermal-equilibrium electron concentration in the conduction band can be 
written as 

The parameter N, is called the effective densin r$ stutes function in the conduc- 
tion band. If we were to assume that in,* = mo,  then the value of the effective density 
of states function at T = 300 K is N ,  = 2.5 x 10" cm-', which is the order of 
magnitude of N ,  for most semiconductors. If the effective mass of the electron is 
larger or smaller than mo, then the value of the effective density of states function 
changes accordingly, but is still of the same order of magnitude. 

Objective I EXAMPLE 4.1 

Calculate the probability that a state in  the conduction band is occupied by an electron and cal- 
culate the thermal equilibrium electron concentration in  silicon at T =  100 K. 

Assume the Fermi energy is 0.25 eV below the conduction band. The value of N, for sil- 
icon at T = 100 K is N, = 2.8 x I0lY cm-'. 
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Solution 
The probability that an energy state at E = E, is occupied by an electron is given by 

The electron concentration is glven by 

or 

no = 1.8 x lo" cm-' 

w Comment 
The probability of a state being occupied can be quite small, but the fact that there are a largt 
number of states means that the electron concentration is a reasonable value. 

The thermal-equilibrium concentration of holes in the valence band is found b] 
integrating Equation (4.2) over the valencc band energy, or 

For energy states in the valence band, E c E,. If (EF - Eu)  >> kT (the Fermi func~ 
tion is still assumed to be within the bandgap), then we have a slightly different fom 
of the Boltzmann approximation. Equation (4.13~1) may be written as 

Applying the Boltzmann approximation of Equation (4.13b) to Equation (4.12) iii. 
find the thermal-equilibrium concentration of holes in the valence band is 
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where the lower limit of integration is taken as minus infinity instead of the bottom 
of the valence hand. The exponential term decays fast enough so that this approxi- 
mation is valid. 

Equation (4.14) may be solved more easily by again making a change of vari- 
able. If we let 

thenmuation (4.14) becomes 

where the negative sign comes from the differential d E  = k T d q ' .  Note that the 
lower limit of q'hecomes +m when E = -m. If we change the order of integration, 
we introduce another minus sign. From Equation (4.8). Equation (4.16) becomes 

We may define a parameter Nu as 

which is called the eflecrive density of states ,function in the valence hand. The 
thermal-equilibrium concentration of holes in the valence band may now be written as 

The magnttude of N ,  is also on thc order o t  lo i9  cm-' at T = 300 K for most semi- 

conductors 

Objective I EXAMPLE 4.2 

Calculate the thermal equilibrium hole concentration in silicon at T = 400 K. 
Assume that the Fermi energy is 0.27 eV above the valence hand energy. The value of Nu 

lorsilicon at T = 300 K is Nu = 1.04 x 10" cm-'. 

l Solution 
The parameter values at T = 400 K are found as: 

and 
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The hole concentration is then 

Comment 
The parameter v mperature can easily he four 
the temperature dependence. 

td hy using the 300 K v. 

The effective density of states functions, N, and N,., are constant for a given- 
semiconductor material at a fixed temperature. Table 4.1 gives the values of the den'. ;e sity of states function and of the effective masses for silicon, gallium arsenide, and 
germanium. Note that the value of N, for gallium arsenide is smaller than the typical 
1019 cm-' value. This difference is due to the small electron effective mass in gallium~ 
arsenide. 

The thermal equilibrium concentrations of electrons in the conduction band 4 
of holes in the valence band are directly related to the effective density of states con- 
stants and to the Fermi energy level 

I TEST YOUR UNDERSTANDING 

E4.1 Calculate the thermal equilibrium electron and hole concentration in silicon at 
T = 300 K for the case when the Fermi energy level is 0.22 eV below the conduction 
hand energy 6,. The value of E, is given in Appendix B.4. 
( < - a 3  (01 X E P 8  = 'Id i i-U3 i,O[ X E L S  = "u ' S U V )  

E4.2 Determine the thermal equilibrium electron and hole concentration in GaAs at i 

T = 300 K for the case when the Fcrmi cnergy level is 0.30 eV above the valence 
band energy E,, .  The value of E, is given in Appendix 8.4. 
( t -W3 C I O I  X tS'9  = Ud '(_U13 6LL0.0 = aU ' S U V )  4 

4.1.3 The Intrinsic Carrier Concentration 

For an intrinsic semiconductor, the concentration of electrons in the conduction b 
is equal to the concentration of holes in the valence band. We may denote n; 

Table 4.1 1 Effective density of states function and effective mass values 

Ne (cd) N, (em-') m:/mo m,'/mo 

Silicon 2.8 x 10'' 1.04 x 10'' 1.08 0.56 
Gellium arsenids 4.7 10" 7.0 x 10" 0.067 0.48 
Germanium 1.04 x lo19 6.0 x 1 0 1 ~ . 5 5  0.37 
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as the electron and hole concentrations, respectively, in the intrinsic semiconductor. 
These parameters are usually referred to as the intrinsic electron concentration and 
intrinsic hole concentration. However, ni = p i ,  so normally we simply use the para- 
meter ni as the intrinsic carrier concentration, which refers to either the intrinsic elec- 
tron or hole concentration. 

The Fermi energy level for the intrinsic semiconductor is called the intrinsic 
Fermi energy, or Ef = E n .  If we apply Equations (4.11) and (4.19) to the intrinsic 
semiconductor, then we can write 

and 

If we take the product of Equations (4.20) and (4.21). we obtain 

where E, is the bandgap energy. For a given semiconductor material at a constant 
temperature, the value of n ,  is a constant, and independent of the Fermi energy. 

The intrinsic carrier concentration for silicon at T = 300 K may be calculated 
by using the effective density of states function values from Table 4.1. The value of 
n, calculated from Equation (4.23) for E, = 1.12 eV is ni = 6.95 x 10' cm-'. The 
commonly accepted value' of n, for silicon at T = 300 K is approximately 
1.5 x loLo cm-'. This discrepancy may arise from several sources. First, the values 
of the effective masses are determined at a low temperature where the cyclotron res- 
onance experiments are performed. Since the effective mass is an experimentally 
determined parameter, and since the effective mass is a measure of how well a parti- 
cle moves in acrystal, this parameter may be a slight function of temperature. Next, 
the density of states function for a semiconductor was obtained by generalizing the 
model of an electron in a three-dimensional infinite potential well. This theoretical 
funcfion may also not agree exactly with experiment. However, the difference be- 
tween the theoretical value and the experimental value of n ,  is approximately afactor 

- 
'Vuious references may list slightly different values of the inuinsic d i c o n  concentration at room 
!emperamre. Ingeneral. they are all between I x 10" and 1.5 x l0"'cm-'. This difference i,. in most 
carer, not significant. 
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Table 4.2 I Commonly accepted value of ,l ,  

a tT=300K 

Silicon ,I, = 1.5 x 10"' cm-3 
Gallium arsenide n;  = 1.8 x loh cm-3 
Germanium n ,  = 2.4 x 10" cm-' 

of 2, which, in many cases, is not significant. Table 4.2 lists the commonly accepted 
values of n, for silicon, gallium arsenide, and germanium at 7 = 300 K. 

The intrinsic carrier concentration is a very strong function of temperature. 

EXAMPLE 4.3 1 Objective 

To calculate the intrinsic carrier concentration in pllium arsenide at T = 300 K and at 
T = 450 K. 

The values of N, and N, at 300 K for gallium arsenide are 4.7 x 10" cm ' and 
7.0 x 1018 cm-', respectively. Both N,  and N ,  vary as 7';'. Assume the bandgap enerz! of 
gallium arsenide is 1.42 eV and does not vary with temperature over this range. The w l u s  oi 
kT at 450 K is 

Solution 

Using Equation (4.23). we find for T = 300 K 

so that 

/ /  
ni = 3.85 x 10" cm-' 

Comment  
We may note from this example that the intrinsic camer concmtratian increased by over 4or- 
ders of magnitude as the temperature increased by 150•‹C. 

Figure 4.2 is a plot of ni from Equation (4.23) for silicon, gallium arsenide, and 
germanium as a function of temperature. As seen in the figure, the value of n,  fa 
these semiconductors may easily vary over several orders of magnitude as the tem- 
perature changes over a reasonable range, 
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1500 T('C) 

Figure 4.2 I ~ h c  intrinsic carrier 
concentration of Ce, Si, and GaAs as n 
function of temperature. 
(From S x  //3/.1 

TEST YOUR UNDERSTANDING I 
E4.3 Find the intrinsic carrier concentration in silicon at (a )  T = 200 K and (b)  7 = 400 K. 

lr-""lOl x 8E.Z (9) ' S - ~ J  *OI x 8 9 1  ("1 '"Vl 
E4.4 Repeat E4.3 for GaAs. [1-"2 X 8Z'C (4 )  'c.lu3 8E-I (0) ' sW1 
E4.5 Repeat E4.3 fo rce .  [2-"3 ~ 0 1  X 9'8 (4) 'r-m3 ,,,01 X 91.Z (*) 'SUV] 

4.1.4 The Intrinsic Fermi-Level Position 

We have qualitatively argued that the Fermi energy level is located near the  center of 
the forbidden bandgap for the intrinsic semiconductor. We can specifically calculate 
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the intrinsic Femi-level position. Since the electron and hole concentrations are 
equal, setting Equations (4.20) and (4.21) equal to each other, we have 

If we take the natural log of both udec of this equatlon and solve for EF, .  we obtam 

I 
EF,  = - (E,  f E , )  + 

2 2 

From the delinitions for N ,  and N ,  given by Equations (4.10) and (4.1 X), respec- 
tively, Equation (4.25) may be written as 

The first term, f ( E ,  + E,), is the energy exactly m~dway between E, and E, .  or tht 

midgap energy. We can define 

1 
- ( E ,  + E, = EL",dprp 
2 

so that 

If the electron and hole effective masses are equal so that m; = m ; ,  then the intrin- 
sic Fermi level is exactly in the center of the bandgap. If my, > mg. the intrinsic 
Fermi level is slightly above the center, and if m; < m z :  it is slightly below the cen. 
ter of the bandgap. The density of states function is directly related to the carrier ef- 
fective mass: thus a larger effective mass means a larger density of states function. 
The intrinsic Fermi level must shift away from the band with the larger density of 
states in order to maintain equal numbers of electrons and holes. 

EXAMPLE 4.4 1 Objective 

To calculate the position of the intrinsic Fermi level with respect to the center of the handgap 
in silicon at T = 300 K .  

The density of states effective carrier masses in silicon are irif = I . O X I I > ~  and 
,n; = 056mo. 

Solution 
The Intrmw Ferrnl level wlth respect to the center of the bdndgap i r  

3 
E r ,  - Emiderp = -kT in 

4 I 
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I Comment 
The intrinsic Fami level in silicon is 12.8 meV below the midgap energy. If we compare 
12.8 meV to 560 meV, which is one-half of the bandgap energy of silicon, we can, in many ap- 
plications, simply approximate the intrinsic Fermi level to be in the center of the bandgap. 

TEST YOUR UNDERSTANDING 

E4.6 Determine the position of the intrinsic Fermi level with respect to the ccnter ofthe 
bandzap in GaAs at T = 300 K. (AaUl Z W -  'sub') 

4.2 1 DOPANT ATOMS AND ENERGY LEVELS 
The intrinsic semiconductor may be an interesting material, but the real power of 
semiconductors is realized by adding small, controlled amounts of specific dopant, or  
impurity, atoms. This doping process, described briefly in Chapter I ,  can greatly alter 
the electrical characteristics of the semiconductor. The doped semiconductor, called 
anextrinsic material, is the primary reason we can fabricate the various semiconduc- 
tor devices that we will consider in later chapters. 

4.2.1 Qualitative Description 

In Chapter 3, we discussed the covalent bonding of silicon and considered the sim- 
ple two-dimensional representation of the single-crystal silicon lattice as shown in 
Figure 4.3. Now consider adding a group V element, such as phosphorus, as a sub- 
stitutional impurity. The group V element has five valence electrons. Four of these 
will contribute to the covalent bonding with the silicon atoms, leaving the fifth more 
loosely hound to the phosphorus atom. This effect is schematically shown in 
Figure 4.4. We refer to the fifth valence electron as a donor electron. 

Figure 4.3 1 Two-dimensional 
representation of the intrinsic silicon lattice. 

Figure 4.4 1 Two-dimensional 
representation of the silicon lattice doped 
with a phosphorus atom. 
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The phosphorus atom without the donor electron is positively charged. At ver) 
low temperatures, the donor electron is bound to the phosphorus atom. However. by 
intuition, it should seem clear that the energy required to elevate the donor electron 
into the conduction band is considerably less than that for the electrons involved i n  
the covalent bonding. Figure 4.5 shows the energy-hand diagram that we would el- 
pect. The energy level, Ed, is the energy state of the donor electron. 

If a small amount of energy, such as thermal energy. is added to the donor elec- 
tron, it can be elevated into the conduction band, leaving bchind a positively char@ 
phosphorus ion. The electron in the conduction band can now move through the cry,- 
tal generating a current, while the positively charged ion is fixed in the clystal. Th~s 
type of impurity atom donates an electron to the conduction band and so is called a 
donor irnynril~u~om. The donor impurity atoms add electrons to the conduction band 
without creating holes in the valence band. The resulting material is referred to as an 
n - v p e  semiconductor (n for the negatively charged electron). 

Now consider adding a group I11 element, such as boron, as a substitutional 1111- 

purity to silicon. The group 111 element has three valence electrons, which are dl 
taken up in the covalent bonding. As shown in Figure 4.6a, one covalent bonding po- 
sition appears to he empty. If  an electron wcre to occupy this "empty" position. i r i  

Figure 4.5 1 The energy-hand diagram showing (a) the discrete donor energy state 
and (b) the effect of a donor state being ionized. 

,, ,, 
,, , 

. 
Figure 4.6 1 Twa-dimensional representation of a silicon lattice (a) doped with a boron atm 
and (b) showing [he ionization of the boron atom resulting in  a hole. 
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I Conduction band 
4 

h 

2 
5 E - - - - - - - &  - 
- Valence band 4 
L 

Figure A7 I The energy-band diagram showing (a) the discrete acceptor energy state 
and (b) the effect of an acceptor state being ionizcd. 

energy would have to be greater than that of the valence electrons, since the net charge 
state of the boron atom would now be negative. However, the electron occupying this 
"empty" position does nor have sufficient energy to he in the conduction band, so its 
energy is far smaller than the conduction-band energy. Figure 4.6h shows how va- 
lence electrons may gain a small amount of thermal energy and move about in the 
crystal. The "empty" position associated with the boron atom becomes occupied, and 
other valence electron positions become vacated. These other vacated electron posi- 
tions can he thought of as holes in the semiconductor material. 

Figure 4.7 shows the expected energy state of the "empty" position and also the 
formation of a hole in the valence hand. The hole can move through the crystal gen- 
erating a current, while the negatively charged boron atom is fixed in the crystal. The 
group Ill atom accepts an electron from the valence band and so is refcrred to as an 
occeptur impurir). arorn. The acceptor atom can generate holes in the valence hand 
without generating electrons in the conduction band. This type of semiconductor ma- 
terial is referred to as ap-type material ( p  for the positively charged hole). 

The pure single-crystal semiconductor material is called an intrinsic material. 
Adding controlled amounts of dopant atoms, either donors or acceptors, creates a 
material called an rrtrinsic serniconducto~ An extrinsic semiconductor will have ei- 
ther apreponderance of electrons (n type) or a preponderance of holes (p type). 

42.2 Ionization Energy 

We can calculate the approximate distance of the donor electron from the donor im- 
purity ion, and also the approximate energy required to elevate the donor electron 
into the conduction band. This energy is referred to as the ionization energy. We will 
use the Bohr model of the atom for these calculations. The justification for using lhis 
model is that the most probable distance of an electron from the nucleus in a hydro- 
gen atom, determined from quantum mechanics, is the same as the Bohr radius. The 
energy levels in the hydrogen atom determined from quantum mechanics are also the 
same as obtained from the Bohr theory. 

In the case of the donor impurity atom, we may visualize the donor electron or- 
biting the donor ion, which is embedded in the semiconductor material. We will need 
to use the permittivity of the semiconductor material in the calculations rather than 
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the permittivity of free space as is used in the case of the hydrogen atom. We willal 
use the effective mass of the elcctron in the calculations. 

The analysis begins by setting the coulonib force of attraction between theek 
tron and ion equal to the centripetal force of the orbiting electron. This conditiona 
give a steady orbit. We have 

where u is the magnitude of the velocity and r, is the radius of the orbit. If we assut 
the angular momentum is also quantized, then we can write 4 
where n is a positive integer. Solving for v from Equation (4.28), substituting i~ 
Equation (4.27), and solving for the radius, we obtain I 

The assumption of the angular momentum being quantized leads to the radius a1 
being quantized. 

The Bohr radius is defined as 

We can normalize the radiusof the donor orbital to that of theBohr radius, which g i ~  

where E ,  is the relative dielectric constant of the semiconductor material, mo is I 
rest mass of an electron, and m* is the conductivity effective mass of the electron 
the semiconductor. 

If we consider the lowest energy state in which n = I ,  and if we consider silio 
in which t, = 11.7 and the conductivity effective mass is mv/m0  = 0.26. then ' 
have that 

or rl = 2 3 . 9 ~ .  This radius corresponds to approximately four lattice constants 
silicon. Recall that one unit cell in silicon effectively contains eight atoms, so the 
dius of the orbiting donor electron encompasses many silicon atoms. The donoreb 
tron is not tightly bound to the donor atom. 

The total energy of the orbiting electron is given by I 
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where T isthe kinetic energy and Vis the potential energy of the electron. The kinetic 
energy is 

I T = -m*u2 
2 

(4.34) 

Using the velocity u from Equation (4.28) and the radius r,, from Equation (4.29), the 
kinetic energy becomes 

The potential energy IS 

The total energy 1s the sum of the kinetic and potential energies, so that 

For the hydrogen atom, m' = mo and t = to .  The ionization energy of the hydrogen 
atom in the lowest energy state is then E = - 13.6 eV. If we consider silicon, the ion- 
ization energy is E = -25.8 meV, much less than the bandgap energy of silicon. 
This energy is the approximate ionization energy of the donor atom, or the energy re- 
quired to elevate the donor electron into the conduction band. 

For ordinary donor impurities such as phosphorus or arsenic in silicon or ger- 
manium, this hydrogenic model works quite well and gives some indication of the 
magnitudes of the ionization energies involved. Table 4.3 lists the actual experimen- 
tally measured ionization energies for a few impurities in silicon and germanium. 
Germanium and silicon have different relative dielectric constants and effective 
masses; thus we expect the ionization energies to differ. 

4.2.3 Group III-V Semiconductors 

In the previous sections, we have been discussing the donor and acceptor impurities 
in a group IV semiconductor, such as silicon. The situation in the g o u p  Ill-V 

Table 4.3 i Impurity ionization energies in silicon 
and germanium 

Ionization energy (eV) 

Impurity Si Ge 

Donors 
Phosphorus 0.045 0.012 
Arsenic 0.05 0.0127 
Acceptors 
Boron 0.045 0.0104 
Aluminum 0.06 0.0102 
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Table 4.4 1 Impur~ty lonuatIan energles 
In ~alhum arsenlde 

Imnuritv Ionization enerev (eVI 

Donors 
Selenium 0.0059 
Tellurium 0.0058 
Silicon 0.0058 
Germanium 0.0061 
Acceptors 
~eryilium 
Zinc 
Cadmium 
Silicon 0.0345 
Germanium 0.0404 

compound semiconductors, such as gallium arsenide, is more complicated. ~ r o u ~ l  
elements, such as beryllium, zinc, and cadmium, can enter the lattice as  subs^, 

tional impurities, replacing the group I11 gallium element to become acceptor i m p  
rities. Similarly, group VI elements, such as selenium and tellurium, can enter the 
lattice substitutionally, replacing the group V arsenic element to become donor im- 
purities. The corresponding ionization energies for these impurities are smaller than 
for the impurities in silicon. The ioniration energies for the donors in gallium ar. 
senide are also smaller than the ionization energies for the acceptors, because of the 
smaller effective mass of the electron compared to that of the hole. 

Group IV elements, such as silicon and germanium, can also be impurity atoms 
in gallium arsenide. If a silicon atom replaces a gallium atom, the silicon impurity 
will act as a donor. but if the silicon atom replaces an arsenic atom. then the silicun 
impurity will act as an acceptor. The same is true for germanium as an impurity atom. 
Such impurities are called amphoteric. Experimentally in gallium arsenide, it is 
found that germanium is predominantly an acceptor and silicon is predominantly a 
donor. Table 4.4 lists the ionization energies for the various impurity atoms in gallium 
arsenide. 

( TEST YOUR UNDERSTANDING 

E4.7 Calculate the radius (normalized to a Bohr radius) of a donor electron in its lowcsr 
energy state in GaAs. (5'561 'suv) 

4.3 1 THE EXTRINSIC SEMICONDUCTOR 
We defined an intrinsic semiconductor as a material with no impurity atoms pres 
in the crystal. An extrinsic semiconductor is defined as a semiconductor in 
controlled amounts of specific dopant or impurity atoms have been added so that 
thermal-equilibrium electron and hole concentrations are different from the intrin 
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canier concentration. One type of canier will predommate in an extrinsic semicon- 
ductor. 

4.3.1 Equilibrium Distribution of Electrons and Holes 

Adding donor or acceptor impurity atoms to a semiconductor will change the distrih- 
ution of electrons and holes in the material. Since the Fermi energy is related to the 
distribution function, the Fermi energy will change as dopant atoms are added. If the 
Fermi energy changes from near the midgap value, the density of electrons in the con- 
duction band and the density of holes in the valence hand will change. These effects 
are shown in Figures 4.8 and 4.9. Figure 4.8 shows the case for E F  > EFi  and 
Figure 4.9 shows the case for E F  < E F , .  When E F  > Er i ,  the electron concentra- 
tion is larger than the hole concentration, and when EF < EF;.  the hole concentration 

E, 

hole concentration 

Figure 4.81 Density of states functions. Fermi-Dirac 
probability function, and areas representing electron 
and hole concentrations for the case when EF is above 
the intrinsic Fermi energy. 
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Figure 4.9 1 Density of states functions, Fermi-Dirac 
probability function, and areas representing electron and 
hole concentrations for the casc when E, is below the 
intrinsic Fermi energy. 

is larger than the electron concentration. When the denqity of electrons 1s greater t, 
the density of holes, the semiconductor is n type; donor impurity a t o m  have been 
added. When the density of holes is greater than the density of electrons, the semi- 
conductor is p type; acceptor impurity atoms have been added. The Fermi energy 
level in a semiconductor changes as the electron and hole concentrations change and, 
again, the Fermi energy changes as donor or acceptor impurities are added. The 
change in the Fermi level as a function of impurity concentrations will be considered 
in Section 4.6. 

The expressions previously derived for the thermal-equilibrium concentrationo 

no and po in terms of the Fermi energy. These equations are again given as 

4 
electrons and holes, given by Equations (4.1 1) and (4.19) are general equations fa 

1 

no = N, exp I 
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and 

As wejust discused,  the F e m l  energy may vdry through the handgap energy, w h ~ c h  
w~ll then change the values of nn and po 

Objective I EXAMPLE 4.5 

To calculate the thermal equilibrium concentrations of electrons and holes for a given Fermi 
energy. 

Consider silicon at T = 300 K so that N,, = 2.8 x 10" cm-' and N ,  = 1.04 x 

lot9 ~ m - ~ .  Assume that the Fermi energy is 0.25 eV below the conduction hand. If we assume 
that the bandgap energy of silicon is 1. I2 eV, then the Fermi energy will be 0.87 cV ahuve the 
valence band. 

I Solution 
Using Equatron (4.1 I), we have 

From Equation (4.19). we can write 

pi, = ( 1  0 4  x 10") exp - = 2.7 x lo4 c r - '  

I Comment 
The change i n  the Fertni level is actually a function of the donor or acceptor impurity conccn- 
uations that are added to the scmiconductor However, this examplc shows that electron and 
hole concentrations change by orders of magnitude from the intrinsic carrier concentration as 
the Fermi energy changes by a few tenths of an electron-volt. 

In this example, since no > po, the semiconductor is n type. In an n-type semi- 
conductor, electrons are referred to as the majority carrier and holes as the minority 
carrier. By comparing the relative values of nu and po in the example, it is easy to 
see how this designation came about. Similarly, in a p-type semiconductor where 
po > no, holes are the majority carrier and electrons are the minority carrier. 

We may derive another form of the equations for the thermal-equilibrium con- 
centrations of electrons and holes. If w e  add and subtract an intrinsic Fermi energy in 
the exponent of Equation (4.1 I), w e  can write 
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The intrinsic carrier concentration is given by Equation (4.20) as 

n,  = N, exp I 
50 that the thermal-equilibrium electron concentration can be wrltten as 

I I 

Similarly, if we add and subtract an intrinsic Fermi energy in the exponent of Eq 
tion (4.19), we will obtain 

As we will see, the Fermi level changes when donors and acceptors are added, 
hut Equations (4.39) and (4.40) show that, as the Fermi level changes from the intrin- 
sic Fermi level, no and po change from the n; value. If E F  > E F ~ ,  then we will have 
no > n, and po < n,.  One characteristic of an n-type semiconductor is that E F  > E f i ~  
so that no > po. Similarly, in a p-type semiconductor, E F  < Eri  SO that yo > 11, an 
no c ni;  thus po > no. 1 We can see the functional dependence of no and 11" with E r  in Figures 4.8 and 
4.9. As E,c moves above or below E F ~ ,  the overlapping probability function with the 
density of states functions in the conduction band and valence band changes. As E F 8  
moves above E > ; ,  the probability function in the conduction band increases, while' 
the probability, I - f F ( E ) ,  of an empty state (hole) in the valence band decreases. 
As E F  moves below E F , ,  the opposite occurs. 

4.3.2 The nope Product 

We may take the product of the general expressions for no and po as given inEqua- 
tions (4.11) and (4.19). respectively. The result is 

which may be written as 

As Equation (4.42) was derived for a general value of Fermi energy, the values 
of no and po are not necessarily equal. However, Equation (4.42) is exactly the same 
as Equation (4.23), which we derived for the case of an intrinsic semiconductor. We 
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then have that, for the sem~conductor in thermal equihhr~um, 

Equation (4.43) states that the product of no and po is alwayh a constant for a 
given semiconductor material at a given temperature. Although this equation seems 
very simple, it is one of the fundamental principles of semiconductors in thermal 
equilibrium. The significance of this relation will become more apparent in the chap- 
ters that follow. It is important to keep in mind that Equation (4.43) was derived 
using the Boltzmann approximation. If the Boltzmann approximation is not valid, 
then likewise, Equation (4.43) is not valid. 

An extrinsic semiconductor in thermal equilibrium does not, strictly speaking, 
contain an intrinsic carrier concentration, although some thermally generated car% 
ers are present. The intrinsic electron and hole carrier concentrations are modified by 
the donor or acceptor impurities. However, we may think of the ir~trinsic concentra- 
tion ni in Equation (4.41) simply as a parameter of the semiconductor material. 

$4.3.3 The Fed-Dirac Integral 

In the derivation of the Equations (4.1 1) and (4.19) for the thermal equilibrium elec- 
tron and hole concentrations, we assumed that the Boltzmann approximation was 
valid. If the Boltzmann approximation does not hold. the thermal equilibrium elec- 
tron concentration is written from Equation (4.3) as 

If we again make a change of \ar~able and let 

and also define 

then we can rewrite Equation (4.44) as 

The integral is defined as 
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Figure 4.10 1 The Fermi-Dirac integral FI 12 as a function 
of the Fermi energy. 
( F r m  s:e 113i.J 

This function, called the Fermi-Dirac integral, is a tahulated function of the variabl 
q p .  Figure 4.10 is a plot of the Fermi-Dirac integral. Note that if 7~ > 0. the 
Er > E,; thus the Fermi energy is actually in  the conduction hand. 

EXAMPLE 4.6 I Objective 

To calculate the electron concentration using thc Fermi-Dimc integral. 4 

Let qi = 2 so that the Fermi energy is above the conduction hand by approximatel 
52 meV at T = 100 K. 

Solution 
Equation (4.46) can he written as 

For silicon at 300 K, N, = 2.8 x 10" cm ' and. fromFigure 4.10, the Femi-Dirac integr: 
has a value of J-,,>(2) = 2.3. Then 

2 
n,, = - ( 2  8 x 101")(2.3) = 7.27 x 10" c m '  

Jr; ' I 
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I Comment 
Note that if we had used Equation (4.11). the thermal equilibrium value of nu  would be no = 

2.08 x 10?O cm-', which is incorrect since the Bolhmann approximation is not valid for this 
case. 

We may use the same general method to calculate the thermal equilibrium con 
centration of holes, We obtain 

The integral in Equation (4.48) is the same Fermi-Dirac integral defined hy Equa- 
tion (4.47) although the variables have slightly different definitions. We may note 
that if q; z 0, then the Fermi level is in the valence hand. 

TEST YOUR UNDERSTANDING 1 
E4.8 Calculate the thermal equilibrium electron concentration in silicon Tor the case when 

EF = E, and T = 100 K. ( i -ms 6,01 X 6.1 'Tuff) 

4.3.4 Degenerate and Nondegenerate Semiconductors 

In our discussion of adding dopant atoms to a semiconductor, we have implicitly as- 
sumed that the concentration of dopant atoms added is small when compared to the 
density of host or semiconductor atoms. The small number of impurity atoms are 
spread far enough apart so that there is no interaction between donor electrons, for 
example, in an n-type material. We have assumed that the impurities introduce dis- 
crete, noninteracting donor energy staLes in the n-type semiconductor and discrete. 
noninteracting acceptor states in the p-type semiconductor. These types of semicon- 
ductors are referred to as nondegenetate semiconductors. 

If the impurity concentration increases, the distance between the impurity atoms 
decreases and apoint will he reached when donor electrons, for example, will begin 
to interact with each other When this occurs, the single discrete donor energy will 
split into a hand of energies. As the donor concentration further increases, the band 
of donor states widens and may overlap the bottom of the conduction band. This 
overlap occurs when the donor concentration becomes comparable with the effective 
density of states. When the concentration of electrons in the conduction band exceeds 
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l?igure 4.11 1 Simplified energy-band diagrams for degenerately doped (a) n-type and 
(b) p-type semiconductors. 

the density of states N ,  , the Fermi energy lies within the conduction b u d .  This ty 
of semiconductor is called a degenerate n-type semiconductor. 

In a similar way, as the acceptor doping concentration increases in a p-ty 
semiconductor, the discrete acceptor encrgy states will split into a band of energ' 
and may overlap the top of the valence band. The Fermi energy will lie in the valen 
band when the concentration of holes exceeds the density of states N,.. This type 
semiconductor is called a degenerate p-type semiconductor. 

Schematic models of the energy-band diagrams for a degenerate n-type and d 
generate p-type semiconductor are shown i n  Figure 4.1 1 .  The energy states below 
are mostly filled with electrons and the energy states above EF are mostly empty. 
the degenerate n-type semiconductor, the states between E F  and E, are mostly fill 
with electrons; thus, the electron concentration in the conduction band is very 1 
Similarly, in the degenerate p-type semiconductor, the energy states between E, 
E, are mostly empty; thus, the hole concentration in the valence band is very I 

4.4 1 STATISTICS OF DONORS AND ACCEPTORS 
In the last chapter, we discussed the Fermi-Dirac distribution function, which gi 
the probability that a particular energy state will be occupied by an electron. We ne 
to reconsider this function and apply the probability statistics to the donor and ac- 
ceptor energy states. 

4.4.1 Probability Function 
One postulate used in the derivation of the Fermi-Dirac probability function was the 
Pauli exclusion principle, which states that only one particle is permitted in 
quantum state. The Peuli exclusion principle also applies to the donor and accept 
states. -d 

Suppose we have Ni electrons andgi quantum states, where the subscript i indi- 
cates the ith energy level. There are gi ways of choosing where to put the first pani- 
cle. Each donor level has two possible spin orientations for the donor electron; 
each donor level has two quantum states. The insertion of an electron into one qu 
tum state, however, precludes putting an electron into the second quantum state. 
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adding one electron, the vacancy requirement of the atom is satisfied, and the addi- 
tion of a second electron in the donor level is not possible. The distribution function 
of donor electrons in the donor energy states is then slightly different than the 
Fenn-Dirac function. 

The probability function of electrons occupying the donor state is 

where n,~ is the density of electrons occupying the donor level and E,, is the energy 
ofthe donor level. The factor 4 in this equation is a direct result of the spin factorjust 
mentioned. The factor is sometimes written as l /g ,  where g is called a degeneracy 
factor. 

Equation (4.50) can also be written in the form 

where N: is the concentration of ionized donors. In many applications, we will be 
interested more in the concentration of ionized donors than in the concentration of 
electrons remaining in the dnnor states. 

If we do the same type of analysis for acceptor atoms, we obtain the expression 

where N, is the concentration of acceptor atoms. E,, is the acceptor energy level, p ,  
is the concentration of holes in the acceptor states, and N; is the concentration of 
ionized acceptors. A hole in an acceptor state corresponds to an acceptor atom that is 
neutrally charged and still has an "empty" bonding position as we discussed in Sec- 
tion 4.2.1. The parameter g is, again, a degeneracy factor. The ground state degener- 
acy factor g is normally taken as four for the acceptor level in silicon and gallium 
arsenide because of the detailed band structure. 

4.4.2 Complete Ionization and Freeze-Out 

The probability function for electrons in the donor energy state was just given by 
Equation (4.50). If we assume that (Ed - EF)  >> kT,  then 

If (Ed - E)) >> k T ,  then the Boltzmann approximation is also valid for the elec- 
trons in the conduction band so that. from Equation (4.1 1). 
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We can determine the relative number of electrons in the donor state compa 
with the total number of electrons; therefore we can consider the ratio of electron$ 
the donor state to the total number of electrons in the conduction band plus do] 
state. Using the expressions of Equations (4.53) and (4.1 I), we write 

2Nd exp 
- ( E d  - E F )  

n d  -= I (4 i 
nd +no ( E ,  E r )  2 ~ 1  exp I-'"' L T  "' '1 + N, exp [ 

kT ] 
The Fermi energy cancels out of this expression. Dividing by the numerator term, 1 

obtain 

The factor ( E ,  - E,,) is just the ionization energy of the donor electrons. 

EXAMPLE 4.7 I Objective 

To determine the fraction of total electmns still in the donor states at T = 100 K. 
Conrider phusphorus doping in silicon, for T = 3MI  K, at a concentration of Nd 

1016 cm-'. 

8 Solution 
Usmg Equat~on (4.55). we lind 

8 Comment 
This example shows that there are very few electmns in the donor state compared with th 
conduction band. Essentially all of the electrons from the donor states are in the conductio 
band and. since only about 0.4 percent of the donor states contain electrons, the donor state 
are said to be completely ionized. 

At room temperature, then, the donor states are essentially completely ionize1 
and, fora typical doping of 10"cnVJ, almost all donor impurity atoms have donate1 
an electron to the conduction band. 

At room temperature, there is also essentially complete ioniznrion of the accep 
tor atoms. This means that each acceptor atom has accepted an electron from them 
lence band so that p, is zero. At typical acceptor doping concentrations, a hole is cre- 
ated in the valence hand for each acceptor atom. This ionization effect and the 
creation of electrons and holes in the conduction band and valence band, respec. 
tively, are shown in Figure 4.12. 
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Conductton band Conductm band 

t E< 

Figure 4.12 i Energy-hand diagrams showing complete ionization of (a) donor states 
and (b) acceptor states. 

t 
Conduction band 

t 
Canducoan hand 

E' 4 E< ------ - Ed 

Figure 4.13 1 Energy-band d~agrarn at T = 0 K for (a) n-type and (b) p-type 
semiconductors. 

The opposite of complete ionization occurs at T  = 0 K .  At absolute zero de- 
grees, all electrons are in their lowest possible energy state; that is, for an n-type 
semiconductor, each donor state must contain an electron, therefore n,, = Nd or 
N: = 0. We must have, then, from Equation (4.50) that exp [ ( E d  - E , ) / k T ]  = 0. 
Since T = 0 K, this will occur for exp (-oo) = 0, which means that E F  > Ed. The 
Fermi energy level must be above the donor energy level at absolute zero. In the case 
of a p-type semiconductor at absolute zero temperature, the impurity atoms will not 
contain any electrons, so that the Fermi energy level must be below the acceptor en- 
ergy state. The distribution of electrons among the various energy states, and hence 
the Fermi energy, is a function of temperature. 

Adetailed analysis, not given in this text, shows that at T = 0 K, the Fermi en- 
ergy is halfway between E, and Ed for the n-type material and halfway between E ,  
and E,  for the p-type material. Figure 4.13 shows these effects. No electrons from 
thedonor state are thermally elevated into the conduction band; this effect is called 
freeze-our. Similarly, when no electrons from the valance band are elevated into the 
acceptor states, the effect is also called freeze-out. 
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Between T = O K. freeze-out, and T = 300 K,  complete ionization, we hav 

partial ionization of donor o r  acceptor atoms. ! 
EXAMPLE 4.8 I Objective I 

To determine the temperature at which 90 percent of acceptor atoms are ionized. 
Consider p-type silicon doped with boron at a concentratian of N ,  = 10'" ~ m - ~ .  I 

w Solution 
Find the ratio of holes in  the acceptor state to the total number of holes in the valence band pl 
acceptor state. Taking into account the Boltmmann approximation and assuming the degenw 
acy factor is y = 4, we write 

Po - 
I 

For 90 percent ionization, 

I 

Uung trlal dnd error, wc find that T = 193 K 

w Comment 
This example shows that at approximately lO0C below room lemperature. we still 
YO percent of the acceptor a t m s  ionized; in other words. 90 perccnt of the acceptor ato 
have "donated" a hole to the valence band. 

E4.9 Determine the fraction of total holes still in the acceptor states ill silicon at T = 

300 K for a boron impurity concentration of N ,  = lo" cnrr3. (hL1.O S U V )  
- - - - E4.10 Consider silicon with a phosphorus impurity concentration of N,, = 5 x 10" cm-'. Em - e 

Plot the percent of ionbed impurity atoms versus temperature over the range 
100 < T < 400 K. 

4.5 1 CHARGE NEUTRALITY 
I 

In thermal equilibrium, the semiconductor crystal is electrically neutral. The el 
trons are distributed among the various energy states. creating negative and positiv .i 
charges, but the net charge density is zero. This charge-neutrality condition is used 
determine the thermal-equilibrium electron and hole concentrations as a function 
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the impurity doping concentration. We will define a compensated semiconductor and 
then determine the electron and hole concentrations as a function of the donor and 
acceptor concentrations. 

4.5.1 compensated Semiconductors 

A compensated semiconductor is one that contains both donor and acceptor impurity 
atoms in the same region. A compensated semiconductor can he formed, for exam- 
ple, by diffusing acceptor impurities into an n-type material, or by diffusing donor 
impurities into a p-type material. An n-type compensated semiconductor occurs 
when Nd > N,, and a p-type compensated semiconductor occurs when N, > Nd.  
If N, = Nd, we have a completely compensated semiconductor that has. as we will 
show, the characteristics of an intrinsic material. Compensated semiconductors are 
created quite naturally during device fabrication as we will see later. 

4.5.2 Equilibrium Electron and Hole Concentrations 

Figure 4.14 shows the energy-band diagram of a semiconductor when both donor 
and acceptor impurity atoms are added to the same region to form a compensated 

Totdl electron 
concentration 

Thermal ( Donor 
electrons "0 electrons 

Thermal 
PO 

i Acceptor 
hole\ hole? 

Total hole 
concentratmn 

Figure 4.14 1 Energy-band diagram of a campenrated 
semiconductor showing ionized and un-ionized donors 
and acceptors. 
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semiconductor. The figure shows how the electrons and holes can be distributed 
among the various states. 

The charge neutrality condition is expressed by equating the density of 
charges to the density of positive charges. We then have 

where no and po are the thermal-equilibrium concentrations of electrons and holes' 
the conduction band and valence band, respectively. The parameter nd is the conce 
tration of electrons i n  the donor energy states, so N: = N,, - n,, is the concentrati 
of positively charged donor states. Similarly, p ,  is the concentration of holes in th 

and temperature. 

3 
acceptor states, so N; = N,, - p ,  is the concentration of negatively charged accep- 
tor states. We have expressions for no. po. n d .  and p,, in terms of the Fermi energy 

If we assume complete ionization, n,, and p, are both zero, and Equation (4.57) 
becomes j 

If we express (I" as n f lnu ,  then Equat~on (4.58) can be wrlttcn a\ 

which in turn can be wntten as 

The electron concentration nu can be determined using the quadrat~c formula, or 

The positive sign in the quadratic formula must he used, since, in the limit of an in. 
trinsic semiconductor when N,, = N,i = 0. the electron concentration must he a pos- 
itive quantity, or nu = n i .  

Equation (4.60) is used to calculate the electron concentration in an n-type semi- 
conductor, or when Nn > N,,. Although Equation (4.60) was derived for a compen- 
sated semiconductor, the equation is also valid for N,, = 0. 

EXAMPLE 4.9 I Objective 

To determine the thermal equilibrium electron and hole concentrations fur a given doping 
concentration. 

Consider an n-type silicon semiconductor at T = 300 Kin which Nd = 10'' C ~ I  and 

N, = 0. The intrinsic carrier concentration is assumed to be n; = 1.5 x 10" cm-' 
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1 Solution 
From Equation (4.60). the majority carrier electron concentration is 

The minority canier hule concentration is found as 

I Comment 
In this example. N d  >> n,. so that the thermal-equilibrium majority carrier elzctran concen- 
tration is essentially equal to the donor impurity concentration. The thermal-equilibrium ma- 
jority and minority carrier concentrations can differ by many orders of magnitude. 

We have argued in our discussion and we may note from the results of Exam- 
ple4.9 that the concentmtion of electrons in the conduction band increases above the 
intrinsic carrier concentration as we add donor impurity atoms. At the same time, the 
minority carrier hole concentration decreases below the intrinsic carrier concentra- 
tion as we add donor atoms. We must keep in mind that as we add donor impurity 
atoms and the corresponding donor electrons, there is a redistribution of electrons 
among available energy states. Figure 4.15 shows a schematic of this physical redis- 
tribution. A few of the donor electrons will fall into the empty states in the valence 

Figure 4.15 1 Energy-band diagram showing the 

- redistribution of electrons when donors are added. 
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band and, in doing so, will annihilate some of the intrinsic holes. The minority car- 
rier hole concentration will therefore decrease as we have seen in Example 4.9. At 
the s a n e  time, because of this redistribution, the net electron concentration in the 
conduction band is not simply equal to the donor concentration plus the intri 
electron concentration. 

EXAMPLE 4.10 I Objective 
I 

To calculate the thermal-equilibrium electron and hole concentrations in a germanium sarnplei 
far a given doping densiiy. 

Consider a germanium sample at T = 300 Kin which Nd = 5 x 10" c m  and N, = 
Assume that n, = 2.4 x 10" cm-'. 

Solution 
Again, from Equation (4.60). the majority cilrrier clectron concentration is 

I 
The minority carrler hole concentratwn is 

Comment 
If the donor impurity concentration is not too different in magnitude from the intrinsic carrier 
concentration. then the thermal-equilibrium majority carrier electron concentration is influ- 
enced by the intrinsic concentration. 

We have seen that the intrinsic carrier concentration n,  is a very strong function 
of temperature. As the temperature increases, additional electron-hole pairs are ther- 
mally generated so that the n j  term in Equation (4.60) may begin to dominate. The 
semiconductor will eventually lose its extrinsic characteristics. Figure 4.16 shows 
the electron concentration versus temperature in silicon doped with 5 x 10'' donors 
per cm3. As the temperature increases, we can see where the intrinsic concentration 
begins to dominate. Also shown is the partial ionization, or the onset of freeze-out, at 
the low temperature. 

If we reconsider Equation (4.58) and express no as nf lpu,  then we have 1 



4.5 Charge Neutralrfy 

Figure 4.16 1 Electron concentration versus temperature 
showing the three regions: partial ionization, extrinsic, and 
intrinsic. 

Using the quadmt~c  formula, the hole concentration is  gwen  by 

where the positive sign, again, must h e  used. Equation (4.62) is used to  calculate the 
thermal-equilibrium majority carrier hole concentration in a p-type semiconductor, 
or when N. > Nd. This equation also applies for Nd = 0. 

O b j e c t i v e  I EXAMPLE 4.11 

To calculate the thermal-equilibrium electron and hole concentrations in a compensated p-type 
mniconductor. 

Consider a silicon semiconductor at T = 300 K in which N,, = 1016 cm-' and N,, = 
3 x 10'' cm~'.Assumen, = 1.5 x 10'' ~ m - ~ .  

1 Solution 
Since No > N d ,  the compensated semiconductor is p-type and the thermal-equilibrium ma- 
jority camier hole concentration is given by Equation (4.62) as 
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The mlnonty carrier electron concentrdtlon IS 

n i  (I 5 x 
, t o = =  = 3 21 x IOQm-' 

po 7 x 10" 

Comment I 
If we assume complete ionization and if ( N ,  - N d )  >> n , ,  then the majority carrier hole co 
centration is, to a very good approximation, just the difference between the acceptor and 
concentrations. 

We may note that, fo r  a compensated p-type semiconductor, the minority cam 
electron concentration is determined from 1 

DESIGN I Objective 
EXAMPLE 4.12 

To determine the required impurity doping concentration in a semiconductor material. 
A silicun device with n-type material is to be operated at T = 550 K. At this trmperaturq 

the intrinsic carrier concentration must contribute no more than 5 percent of the total elec 
concenrratlon. Determine the minimum donor concentration required to meet this 

rn Solution 
At T = 550 K, the intrinsic camer concentration is found from Equation (4.23) as 

01 

so that 

For the intrinsic carrier concentrationto contribute no more than 5 percent of the total electnn 
concentration, we set no = 1.05Nd. 

Fmm Equation (4601, we have ! 

2 

or 

l . e N , =  2 ~.+,/r + (3.20 1 0 1 4 ) 2  



which yields 

4.6 Position of Ferm! Enwgy Level 

I Comment 
If the temperature remains less than 7 = 550 K, then the intrinsic carricr concentration will 
contribute less than 5 percent of the total electron concentration for this donor impurity 
concentration. 

Equations (4.60) and (4.62) are used to calculate the majority carrier electron 
concentration in an n-type semiconductor and majority carrier hole concentration in 
a p-type semiconductor, respectively. The minority carrier hole concentration in an 
n-type semiconductor could, theoretically, be calculated from Equation (4.62). How- 
ever, we would be subtracting two numbers on the order of 1016 cm-', for example, 
toobtain a number on the order of 10'' cm-', which from a practical point of view is 
not possible. The minority carrier concentrations are calculated from nope = 1 1 ;  once 
the majority carrier concentration has been determined. 

k TEST YOUR UNDERSTANDING I 
E4.11 Consider n compensated GaAs semiconductor at T = 300 K doped at N,, = 

5 x loJ5 cm-' and N,, = 2 x 10'%11-'. Calculate the thermal equilibrium electron 
andhole conuentrationh. (k"" r-O1 X 91'2 = ""'[ "3 V,Ol X S'I = Od "V)  

E4.12 Silicon is doped at N, = 10" cm-' and N,, = 0. (n)  Plot the concentralion of - 

temperature at which the electron concentralion is equal to 1.1 x 10" cm-?. += 
mzss = .L ' S W )  

4.6 1 POSITION OF FERMI ENERGY LEVEL 
We discussed qualitatively in Section 4.3.1 how the electron and hole concentrations 
change as the Fermi energy level moves through the bandgap energy. Then, in Sec- 
tion 4.5, we calculated the elcctron and hole concentrations as a function of donor 
md acceptor impurity concentrations. We can now determine the position of the 
Fermi energy level as a function of the doping concentrations and as a function of 
temperature. The relevance of the Fermi energy level will be further discussed after 
the mathematical derivations. 

4.6.1 Mathematical Derivation 

The position of the Fermi energy level within the bandgap can be determined by 
using the equations already developed for the thermal-equilibrium electron and hole 
concentrations. If we assume the Boltzmann approximution to be valid, then from 

[ Fquation(4.ll) we haveno = N ,  exp[-(E, - Ep)/kT].  Wecansolvefor E, - EF 
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from this equation and obtain 

(4.6 

where no is given by Equation (4.60). If we consider an n-type semiconductor i 
which Nd >> n i ,  then nu = N,,, so that 

I 
The distance between the bottom of the conduction band and the Fermi energy 

is a logarithmic function of the donor concentration. As the donor concentration in- 
creases, the Fermi level moves closer to the conduction band. Conversely, i f  the 
F e m i  level moves closer to the conduction band, then the electron concentration in 

the conduction band is increasing. We may note that if we have a compensated semi- 
conductor, then the Nd term in Equation (4.64) is simply replaced by Nd - No,  or the 
net effective donor concentration. 

DESIGN I Objective 
EXAMPLE 4.13 

To determine the requircd donor impurity concentration to ohtain a specified Fermi energ). 
Silicon at T = 300 K contains an acceptor impurity concentration of N,, = 1016 cm '. 

- - Determine the concentration of donor impurity atoms that must be added so that the silicun 15 
C 

n type and the Fermi energy is 0.20 eV below the conduction band edge. 

rn Solution r' 
From Equation (4.64). we have 

which can be rewritten as 

N,, - N ,  = N, exp 
( E ,  - E, ) 

Then 

N,, - N, = 2.8 x 10" exp = 1.24 x 10" cm-' 

or i 
Nd = 1.24 x lof6 + Ne = 2.24 x 1 0 ' ~  cm-3 

rn Comment 
A compensated semiconductor can be fabricated to provide a specific Fermi energy level. 
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We may develop a slightly different expression for the position of the Fermi 
level. We had from Equation (4.39) that no = n; exp[(EF - EFi)/kT]. We can 
solve for EF - Efj as 

Equation (4.65) can be used specifically for an n-type semiconductor, where no is 
given by Equation (4.60). to find the difference hetween the Fermi level and the in- 
uinsicFenni level as a function of the donor concentration. We may note that, if the 
net effective donor concentration is zero, that is, N ,  - N, = 0, then no = n ,  and 
EF = E F ; .  A completely compensated semiconductor has the characteristics of an 
intrinsic material in terms of carrier concentration and Fenni level position. 

We can derive the seme types of equations for a p-type semiconductor. From 
Equation(4.19), we have po = N ,  exp [-(EF - E,.)/kT].  so that 

If we assume that N ,  >> 11,. then Equatlon (4.66) can be written as 

The distance between the Fermi level and the top of the valence-band energy for 
a p-type semiconductor is a logarithmic function orthe acceptor concentration: as the 
acceptor concentration increases, the Fermi level moves closer to the valence band. 
Equation (4.67) still assumes that the Boltzmann approximation is valid. Again. if we 
have a compensated p-type semiconductor, then the N, term in Equation (4.67) is re- 
placed by N, - N d ,  or the net effective acceptor concentration. 

We can also derive an expression for the relationship between the Fermi level 
and the intrinsic Fermi level in terms of the hole concentration. We have from Equa- 
tion (4.40) that po = n, exp [-(EF - E r ,  )/kT]. which yields 

Equation (4.68) can be used to find the difference between the intrinsic Fermi level 
and the Fermi energy in terms of the acceptor concentration. The hole concentration 
po in Equation (4.68) is given by Equation (4.62). 

We may again note from Equation (4.65) that, for an n-type semiconductor, 
no > n, and EF > Efj.  The Fermi level for an n-type semiconductor is above E F , .  
For a p-type semiconductor, p" > ni, and from Equation (4.68) we see that 
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Figure 4.17 1 Position of Fcrmi lcvcl for an pa) n-type (N,, > N,,) and (b) p-type 
(N, > N,,) semiconductor. 

E F ~  > E F .  The Fermi level for a p-type semiconductor is below E 6 , .  These result 
are shown in Figure 4.17. 

4.6.2 Variation of EF with Doping Concentration 
and Temperature 

We may plot the position of the Fermi energy level as a function of the doping con 
centration. Figure 4.18 shows the Fermi energy level as a function of donor concen 
tration (n type) and as a function of acceptor concentration (p type) for silicon a 
T = 300 K. As the doping levels increase, the Fermi energy level moves closer to th 
conduction band for the n-type material and closer to the valence band for the p-typ 
material. Keep in mind that the equations for the Ferlni energy level that we havede 
rived assume that the Boltzmann approximation is valid. 

Figure 4.18 I Position of Fermi level as a function of donor 
concentration (n type) and acceptor concentration (p type). 
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Objective I EXAMPLE 4.14 

To determine the Fermi-level position and the maximum doping at which the Boltzmann 
approximation is still valid. 

Consider p-type silicon, at T = 300 K, doped with boron. We may assume that the limit 
of the Boltzmann approximation occurs when EF - E, = 3kT. (See Section 4.1.2.) 

I Solution 
From Table 4.3, we find the ionization energy is E, -EL, = 0.045 eV for boron in silicon. If 
we assume that E l ,  ^- Emidgap. then from Equation (4.681, the position of the Fermi le\,el at 
the maximum doping is given by 

We can then \olve for the doping as 

I Comment 
Ifthe acceptor (or donor) concentration in silicon is greater than approximately 3 x 10" cm-', 
then the Boltzmann approximation of the distribution function becomes less valid and the 
equations for the Fermi-level position are no longer quite as accurate. 

TEST YOUR UNDERSTANDING I 
E4.13 Determine the position of the Fermi level with respect to the valence band energy in 

p type GaAs at T = 300 K. The doping concentrations are N ,  = 5 x 1016 ccm3 and 
Nd = 4 x 1015 cm-'. (AJ O E I O  = "3 - ' 3  'SuV) 

E4.14 Calculate the position of the Fermi energy levcl in n-type silicon at T = 300 K with 
respect to the intrinsic Fermi energy level. The doping concentrations are N,! = 2 x 
10" cm-' and N, = 3 x 1016 cm-). (Aa IZP'O = ''3 - i3 '"V) 

The intrinsic carrier concentration nj. in Equations (4.65) and (4.68), is a strong 
function of temperature, s o  that Ef i n  a function of temperature also. Figure 4.19 
shows the variation of the Fermi energy level in silicon with temperature for several 
donor and acceptor concentrations. As  the temperature increases, n,  increases, and 
E F  moves closer to the intrinsic Fermi level. At high temperature, the semiconduc- 
tormaterial begins to lose its extrinsic characteristics and begins to behave more like 
an intrinsic semiconductor. At the very low temperature, freeze-out occurs; the 
Boltzmann approximation is no longer valid and the equations we derived for the 
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Figure 4.19 1 Porition of Fermi level aq afunction of 
temperature for various doping concentrations. 
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Fermi-level position no longer apply. At the low temperature where freeze-out oe- 
curs, the Fermi level goes above Ed for the n-type material and below E ,  for the 
p-type material. At absolute zero degrees, all energy states below EF are full andall 
energy states above E+ are empty. 

4.6.3 Relevance of the Fermi Energy 

We have been calculating the position of the Fermi energy level as a function of dop 
ing concentrations and temperature. This analysis may seem somewhat arbitrary and 
fictitious. However, these relations do become hignificant later in our discussion of 
pn junctions and the other semiconductor devices we consider. An important pointis 
that, in thermal equilibrium, the Ferrni energy level is a constent throughout a sys- 
tem. We will not prove this statement, but we can intuitively see its validity by con- 
sidering the following examplc. 

Suppose we have a particular material, A, whose electrons are distributed in the 
energy states of an allowed hand as shown in Figure 4.20a. Most of the energy state 
below E F A  contain electrons and most of the energy states above E F A  are empty of 
electrons. Consider another material, B, whose electrons are distributed in the e d  
ergy states of an allowed band as shown in Figure 4.20b. The energy states below 
EFB are mostly full and the energy states above E b H  are mostly empty. If these two 
materials are brought into intimate contact, the electrons in the entire system will 
tend to seek the lowest possible energy. Electrons from material A will flow into the 
lower energy states of material B, as indicated in Figure 4.20c, until thermal equi- 
librium is reached. Thermal equilibrium occurs when the distribution of electrons, a) 
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Figurn 4.20 I The Fenni energy of (a) material A in thermal equilibrium, (b) material B 
in thermal equilibrium, (c) materials A and B at the instant lhcy are placed in contact, 
md (d) materials A and B in contact at thermal equilibrium. 

a function of energy, is the same  in  the t w o  materials. This  equilibrium state occurs 
when the Fermi energy is the same in the two  materials as shown in Figure 4.20d. 
The Fermi energy, important in  the physics of the semiconductor, also provides a 
good pictorial representation of the characteristics of the  semiconductor materials 
and devices. 

4.7 1 SUMMARY 
I The concentration of electrons in the conduction band is the integral over the conduction 

band energy of the product of the density of states function in  thc conduction hand and 
the Frrmi-Dirac probability function. 

I The concentration of holes in the valencc band is the integral over the valence bend 
energy of the product of the dmsity of stares function in the valence band and the 
probability of a state being empty, whichis [I - f,(E)I. 

I Using thc hlaxwrll-Baltzmann approximation, the thermal equilibrium concentration 
of electrons in the conduction band is given by 

where N, is the effectivz density of htatcs in thc conduction band 
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Using thc Maxwell-Boltzmann approximation, the thermal equilibrium concentration 
of holes in the valence band is given by 

po = N, exp I I 
where Nu is the effective dcnsity of states in the valence hand 
The intrinsic carrier concentration is found from 

The concept of doping the semiconductor with dunor (group V elements) impurities 
and acceptor (group 111 elements) impurities to form n-type and p-type extrinsic 
semiconductors was discussed. 
The fundamental relationship of nope = ni was derived. 
Using the concepts of complete ionization and charge neutrality, equations for the 
electron and hole concentrations as a function of impurity doping concentrations we 
derived. 
The position of the Fermi energy level as a function of impurity doping concentratio 
was derived. 
The relevance of the Fermi energy wds discussed. The Fermi energy i s  aconslant . - ~ -. 
throughout a semiconductor that is in thermal equilibrium 

GLOSSARY OF IMPORTANT TERMS I 
acceptor atoms Impurity atoms added to a scmiconductor to create a p-type material 

charge carrier The electron andior hole that moves inside the semiconductor and gives rise 
to electrical cumnts. 

compensated semiconductor A semiconductor that contains both donors and 
the same scmiconductor region. 

complete ionization The condition when all donor atoms are positively 
up their donor electrons and all acceptor atoms arc negatively charged by accepting electr 

degenerate semiconductor A scmiconductor whose electron concentraliun or hole co 
tration is ereater than the effective density of states, so that the Fermi level is in the co 
tion band (n type) or in the valence band (p type). 

donor atoms Impurity atoms added to a semiconductor to create an n-type material. 

effective density of states The parameter N, . which results from integrating the dens' 
quantum states & ( E l  times the Fermi function fi ( E )  aver the conduotion-band ene 
the parameter N , .  which results from integrating the density of quantum states g, (E) ti 
[I - f ,  ( E ) ]  over the valence-band energy. 

extrinsic semiconductor A semiconductor in which controlled amounts of donors an 
acceptors have heen added so that the electron and hole concentrations change from th 
trinsic carrier concentration and a preponderance of cither elecmms (n type) or holes (p ty 
is created. 

freeze-out The condition that occurs in a semiconductor when the temperature is 1 
and the donors and acceptors become neutrally charged. The rlectron and hole concen 
become very small. 



intrinsic carrier concentration n; The electron concentration in the conduction hand and 
the hole concentration in the valence band (cqual values) in an intrinsic semiconductor. 

intrinsic Fermi level EFj The position of the Fermi level in an intrinsic semiconduclor. 

intrinsic semiconductor A pure semiconductor material with no impurity atoms and no lat- 
tice defects in thc crystal. 

nondegenerate semiconductor A semiconductor in which a relatively small number of 
donors andlor acceptors have been addcd sn that discrete, nonintcracting donor states andor  
discrete, noninteracting acceptor states are introduced. 

CHECKPOINT 
After studying this chapter. the reader should have the ability to: 

I Derive the equations for the thermal equilibrium concentrations of electrons and holes 
in terms of the Fermi energy. 

I Derive the equation for the intrinsic carrier conccntratian. 
I State the value of the intrinsic camer concentration for silicon at T = 100 K .  
I Deriverhe rxpression for the intrinsic Fcrmi level. 
I Describe the effect of adding donor and acceptor impurity atoms to a semiconductor. 

. "." , 
I Descrihe the meanin@ u i  degenerate and nandegenerate semiconductors. 
I Discuss the concept of charge neutrality. 
I Denve the equations for no and pi, in tcrnmsnf lmpurny doplng concentrations. 
I Discuss the variation of the Fermi energy with doping concentration and temperature. 

REVIEW QUESTIONS 
1. Write the equation for n(E1 as a function of the density of states and the Fzrmi proba- 

bility function. Repeat for the function p ( E ) .  

2. In deriving the equation for ,L,, in ternis of the Fermi function. the upper limit of the 
integral should be the energy at the top of the conduction hand. Justify using infinity 
instead. 

3. Assuming the Bdtzrnann approximation applies, write the equations for ILO and pi, in 
terms of the Fcrmi energy. 

4. What is the value of thc intrinsic carrier concentration in silicon at 7 = 300 K? 

5. Under what condition would the intrinsic Fermi levcl he at the midgap energy? 

6. What is a donor impurity'! What is an acceptor impurity? 

7. What is meant by complete ionization? What is meant by freeze-out? 

8. What is the product of no and p, equal to? 

9. Write the equation for charge neutrality for the condition of complete ioniration. 

10. Sketch agraph of ,lo versus temperature for an n-type material. 

11. Sketch graphs of the Fenni energy versus donor impurity concentration and versus 
temperature. 
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PROBLEMS 

Section 4.1 Charge Carriers in Semiconductors 

Calculate the intrinsic carrier concmtration, n,. at T = 200.400. and 600 K for 
(a )  silicon, (b) germanium, and ( r )  gallium arsenide. 

Thc intrinsic carrier concentration in silicon is to be no greater than n, = 1 x 
10'' cm-'. Assume E, = I 1 2  eV. Determine the maximum temperature allowedfc 
the silicon. 

Plot the intrinsic carrier cnncentration, ? I , ,  for a temperature range of 200 .c T 5 
600 K for ( a )  silicon, (b) germanium, and (c) gallium arsenide. (Use a log scale 
for n, .) 

In a particular semiconductor material, the elfective density 01 states functions are 
given hy N, = N,o(T)',' and N,  = N,o(T)'12 where Nc0 and N,.,, are consrants in, 
dependent of temperature. The experimentally determined intrinsic carrier concentn 
tions as a function of temperature are given in Tahle 4.5. Determine the product 
NCoNvo and the handgap energy E,. (Assume E, is independent of temperature.) 

(a) The magnitude of the productgc (E) f r (E)  in the conduction band is a function 
energy as shown in Figure 4.1. Assume the Boltrmann approximation is valid.Deta 
mine the energy with respect to E,  at which the tnaximum occurs. (bj  Repeat pan (I 
for the magnitude of the product gv(E)  [I - f~ ( E ) ]  in the valence band. 

Assume the Baltrmann approximation in a semiconductor is valid. Determine the 
ra t iooln(E)  = gc(E) f,(E) at E = E, + 4 k T  tothat at E = E ,  + kT/Z. 

Assume that E, - EF = 0.20 eV in silicon. Plot n ( E )  = gc(E)  f*.(E) over the ran1 
Ec 5 E s  E, + O . i 0 e V f o r ( a ) T  = 2 0 0 K a n d ( b ) T = 4 0 0 K .  

Two semiconductor materials have exactly the samc properties except that material 
has a bandgap energy of 1.0 eV and material B has a bandgap energy of 1 .Z eV. D ~ I ,  
mine the ratio of ti, of material A to that of material B for T = 300 K. 

(0) Consider silicon at T = 300 K. Plot the thermal equilihrium electron concentra- 
tion n ,  (on a log scale) over the energy range 0.2 5 E,  - EF 5 0.4 eV. (b) Repeat 
pan ( u )  lor the hole concentration over the range 0.2 5 E ,  - E, 5 0.4 eV. 

Givcn the effective messes o l  electrons and holes in silicon, germanium. and galliur 
arsenide, calculate the position of the intrinsic Permi energy level with rerpect to thi 

center of the bandeap for each semiconductor at 7' = 300 K. - .  

(a) The carrier effective masyes in a wniconductor are nl; = 0.621no and nr; = 1.411 
Determine the oosition ofthe intrinsic Fermi level with resoect to the center of the 
bandgap at T = 300 K. (bjRepeat pan (a) ifm: = I .  lorn,, and PI; = 0.25mo. 

Table 4.5 1 lntrtns~c concentratton a\ a 
lunctlon of temperature 

T (K) q (cm-') 

200 1 82 x 10' 



Problems 

Calculate E F ,  with respect to the center af the bdndgap in silicon for T r 200. 400, 
and 600 K. 
Plot the intrinsic Fermi energy E F ,  with reapect to the center of the bmdgap in silicon i- 
for 200 s T 5 600 K. 

Uthe density of states function in the conduction band o f a  oarticular  emi icon duct or 
is a constant equal to K, derive the expression for the thermal-equilibrium concentra- 
tion of electrons in the conduction hand, assuming Fermi-Dirac statistics and asmn- 
ing the Boltzmann approximation is valid. 

Repeat Problem 4.14 if thedensity of states function is given by g,(E) = C , ( E  - E,) 
for E ? E, where CI is a constant. 

Section 4.2 Dopant Atoms and Energy Levels 

4.16 Calculate the ionization energy and lsdiur of the donor electron in  germanium using 
the Bohr theory. (LTsc the density of states effective mass as a first appraximation.) 

4.17 Repeat Problem 4.16 for gallium arsenjde. 

Section 4.3 The Extrinsic Semiconductor 

4.18 Theelectron concentration in ailicon at T = 300 K i s  no = 5 x 10' cm-'. ( a )  Deter- 
mine p,. 1s this n- or p-type material? (b) Determine the position of the Fermi level 
with respect to the intrinsic Fermi level. 

4.19 Determine the values of n, and p, for silicon at T = 300 K if thz Fermi energy is 
0.22 eV above the valence band energy. 

420 (0) If E, - E ,  = 0.25 eV in gallium arsenide at T = 400 K. calculate the values of 
no and p". (b) Assuming the value of no from part (a )  remains constant, determine 
E, - E F  and p, at T = 300 K. 

4.21 The value ofp,, in silicon at T = 300 K is LO'' cm-'. Determine (u) E,  - E f  and 
lb) no. 

4.22 (a) Consider silicon at T = 300 K. Determine po if E,:, - E,. = 0.35 eV. (b)  Assum- 
ing that po from part (a)  remains constant, determine the value of E F ,  - EF when 
T =  400 K. (r.) Find the value of no in both parts (a) and (b). 

4.23 Repeat problem 4.22 for GaAs. 

*4.24 Assume that E ,  = E, at T = 300 K in silicon. Determine po. 

s4.25 Consider silicon at T = 300 K, which has n,, = 5 x 1019 cm-? Determine E, - Ef. 

Section 4.4 Statistics of Donors and Acceptors 

*4.26 The electron and hole concentrations as a function of energy in the conduction band 
and valence band peak at a particular energy as shown in Figure 4.8. Consider silicon 
and assume E,. - EF = 0.20 eV Determine the energy, relative to the band edges, at 
which the concentrations peak. 

'4.27 For the Boltzmann approximation to he valid for a semicunductor, the Fermi level 
must be at least 3kTbelow the donor level in an n-type material and at least 3kT above 
the acceptor level in a p-type material. If T = 300 K, determine thc maximum elcc- 
tmn concentration in an n-type semiconductor and the maximum hole concentration 
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in a p-type semiconductor for the Boltzmann approximation to be valid in ( a )  silicon 
and (b) gallium arsenide. 

- - - - - 4.28 Plot the ratio of un-ionized donor atoms to the total electron conccntration versus 
temperature for silicon over the range 50 5 T 5 200 K. 

Section 4.5 Charge Neutrality 

4.29 Considcr a germmium semiconductor at T = 300 K. Calculate the thermal equilib- 
rium concentrations of r ~ , ,  and po fnr ( a )  N, = 10'' c m  '. N, = 0, and (b)  Nd = 
5 x 1015 cm-', N,, = 0. 

*4.30 The Fermi level in n-type silicun at T = 300 K is 245 meV below the conduction 
band and 200 meV below the donor level. Determine thc pmhahility uf finding an 
electron ( r , )  in the donor level and (b) in a state in the conduction band kT above the 
conductian band edge. 

4.31 Determine the equilibrium electron and hole concentrations in silicon for the follow- 
ing conditions: 2 i  
(a) T = 3 0 0 K , N d = 2 x  1 0 ' i c m ' . N , ,  = 0  

(b)  T = 300 K. N, = 0. N,, = 1016 cm-' 

( c )  T = 300K. Nd = N,, = lo'' cm-' 

(d) T = 400K. No = 0. N,, = 10" cm-' 

( e )  7' = 500 K. Nd = 10'' cm-'. N,, = 0 
4.32 Repeat problem 4.31 for GaAs. 

4.33 Assume that silicon. germanium, and gallium arsenide each have dopant concentra- 
tions of N,, = I x 10" cm-' and N,  = 2.5 x 10" cm-' at T = 300 K. For eachof 
thc three materials ( a )  Is this material n type or p type'? ib) Calculate~i,  and po. 

4.34 A sample of silicon at T = 450 K is doped with boron at a concmtration of 1.5 x 

loi5 cm ' and with arsenic at a concentration of 8 x 1014 c m 2 .  (u) Is the materialn 
or p type? (h) Determine the elcctron and hule concentrations. (c) Calculate the total 
ionized impurity concentration. 

4.35 The thermal equilibrium hole concentration in silicon at T = 300 K is p o  = 2 x 
10' cm-'. Determine the therrnal equilibrium electron concentration. Is the material 
n type or p type? 

4.36 In a sample of GaAs at T = 200 K, we have experimentally determined that n,, = 5 1  
and that Nc, = 0. Calculate no ,  po, and N,i. 

- - - 4.37 Consider a sample of silicon doped at N,, = 0 and N,, = 10''' cm-'. Plot the majoril] d - e 
camier concentration versus temperature uver thr range 200 5 T 5 500 K. - 

4.38 The temperature of a sample of silicon is T = 300 K and the acceptor doping conceo - - - 

i OJ 
tration is N,, = 0. Plat the minority carrier concentratiun (on a log-log plot) versus R 

- = over the range 10" 5 Nd 5 10'' cm-'. 1 
- - - 4.39 Repeat problem 4.38 for GaAs. 

0 4.40 A particular semiconductor material is doped at Nd = 2 x l o t 3  c 1 r 3 .  N,, = 0. and - 
i 

the intrinsic carricr concentration is n, = 2 x 10'' cm-'. Assume complete ionirati 4 
Determine the thermal equilibrium maiority and minority carrier concenuations. 

4.41 (a )  Silicon at T = 300 K is uniformly doped with arsenic atoms at a concentrationof 
2 x 10'%m-' and boron atoms at a concentration of 1 x 10'' cm '. Determine the 
thertnal equilibrium concentrations of majority and minority carriers. (b) Repeat 

J 



Problems 

pan (a) ifthe impurity concentrations are 2 x 10'' cm~'phosphurus atoms and 3 x 
1016 ccm' boron alums. 

4.42 In silicon at T = 300 K. we have experimentally found that no = 4.5 x 10' cm-? and 
Nd = 5 x 10" cm-'. (a )  Is the material n type or p type? ( 6 )  Determine the majority 
and minority carrier concentrations. (c) What types and concentrations of impurity 
atoms exist in the material? 

Section 4.6 Position of Fermi Energy Level 

4.43 Consider germanium with an acceptor concentration of N, = 10" cm-' and a donor 
concentration of N, = 0. Consider temperatures of T = 200,400. and 600 K. Calcu- 
late the position of the Fermi energy with respect to the intrinsic Fermi level at these 
temperatures. 

4.44 Consider gsrmanium at T = 300 K with donor concentrations of Nd = IO1*, l o b 6 ,  
and 1O1%m3. Let N,, = 0. Calculate the position of the Fermi energy level with re- 
spect to the intrinsic Fermi level for these doping concentrations. 

4.45 AGaAs device is doped with a donor concentration of 3 x 10" cm-'. For the device 
lo operate properly. the intrinsic carrier concentration must remain less than 5 percent 
of the total electron concentration. What is the maximum temperature that the dcvice 
may operate? 

1.46 Consider germanium with an acceptor concentration of N ,  = l0I5 cm-' and a donor --- 
concentration of N,, = 0. Plot the position of the Fermi energy with respect to the QJ - 
intrinsic Fermi level as a function of temperature over the range 200 5 T 5 600 K. -~ 

4.47 Consider silicon at T = 300 K with No = 0. Plot the position of the Fermi energy - - ~~ s level with respect to the intrinsic F e m i  lwel  as a function of the donor doping con- 
centration over the range 10'" Nd s 1018 cm-) 

- 
fl - 

4.48 For aparticular semiconductor, E, = 1.50 eV. rn; = 10m:, T = 300 K, and 
n, = I x lo5 cm-'. (u )  Determine the position of the intrinsic Fermi energy level 
with respect to the ccnter of the bandgap. ( h )  Impurity atoms are added so that the 
Fermi energy level is 0.45 eV below the center of the bandgap. ( i )  Are acceptor or 
donor atoms added? (ii)  What is the concentration of impurity atoms added? 

4.49 Silicon at T = 3W K contains acceptor atoms at a concentration UI Nu = 5 x 
10'' cm-). Donor atoms are added forming an n-type compensated semiconductor 
such that the Fermi level is 0.215 eV below the conduction band edge. What concen- 
tration of donor atoms are added? 

4.50 Silicon at T = 300 K is doped with acceptor atoms at a concentration of N,, = 7 x 
10'' cm-'. (a) Determine E r  - E,. (h)  Calculate the concentralinn of additional 
acceptor atoms that must be added to movc the Fermi level a distance kT closer to the 
valence-band edge. 

4.51 (a) Determine the position of the Fermi level with respect to the intrinsic Fermi lcvel 
in silicon at T = 300 K that is doped with phosphorus atoms at a concentration of 
IOl5 cm-'. (h)  Repeat part ( a )  if the silicon is dopcd with boron atoms at a conccntra- 
tion of 10" cm-? ((c Calculate the electron concentration in the silicon for parts 
la) and (h). 

4.52 Gallium arsenide at T = 300 K contains acceptor impurity atoms at a density of 
10'' cm-'. Additional impurity atoms are to be added so that the Fermi level is 
0.45 eV below the intrinsic level. Determine the concentration and type (donor or 
acceptor) of impurity atoms to be added. 
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4.53 Determine the Fermi energy level with respect to the intrinsic Fermi level for each 

condition given in Pmblem 4.31 

4.54 Find the Fermi energy level with respect to the valrnce band energy for the conditi 
given in Problem 4.32. 

4.55 Calculate the position of the Fermi energy level with respect to the intrinsic Fermi 
the conditions eiven in Problem 4.42. 

Summary and Review 

A special semiconductor material is to he "designed." The semiconductor is to be 
n-type and doped with 1 x 10" cm-' donor atoms. Assume complete ionization a 
assume No = 0. The effective density of states functions are given by N, = N,- = 

1.5 x 10" cm-' and are independent of temperature. A particular semiconductor 
device fabricatcd with this material requires the electron concentration to he no i: 
greater than 1.01 x l0I5 cm-' at T = 400 K .  What is the minimum value of the 
bandgap energy'! 

Silicon atoms, at a concentration of 10" c m  ', are added to gallium arsenide. Ass 
that the silicon atoms act as fully ionized dopant atoms and that 5 percent of the c 
centration added replace gallium atoms and 95 percent replace arsenic atoms. Let 
T = 300 K. ( a )  Determine the donor and acceptor concentrations. (h)  Calculate the 
electron and hole concentrations and the position of the Fcrmi level with respect 
to E,, . 
Defects in a semiconductor material introduce alluwed energy states within the for- 
bidden bandgap. Assume that a particular defect in silicon introduces two discrete I 
els: a donor level 0.25 eV above the top of the valence band, and an acceptor level 
0.65 eV above the top of the valence band. The charge state of each defect is a fu 

1 
tion of the position of the Fermi level. ( a )  Sketch the charge density of each defec 
the Fermi level moves from E, to E,. Which defect level dominates in heavily do 
n-type material'? In heavily doped p-type material? (h)  Determine the electron and 
hole concentrations and the location of the Fermi level in ( i )  an n-type sample doped 
at N ,  = l O " ~ m - ~  and ( i i )  in a p-type sample doped at N ,  = 10'' m-'. ( L . )  Deter- 
mine the Fermi level position if no dopant atoms are added. Is the material n-type, 
p-type, or intrinsic? 
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Carrier Transport Phenomena 

P R E V I E W  

I n the previous chapter, we considered the semiconductor in equilibrium and de- 
termined electron and hole concentrations in the conduction and valence bands, 
respectively. A knowledge of the densities of these charged particles is important 

toward an understanding of the electrical properties of a semiconductor material. The 
net Row of the electrons and holes in a semiconductor will generate currents. The pro- 
cess by which these charged particles move is called transport. In this chapter we 
will consider the two basic transport mechanisms in a semiconductor crystal: drift- 
the movement of charge due to electric fields, and d i f fus ion the  flow of charge due 
to density gradients. We should mention, in passing, that temperature gradients in a 
semiconductor can also lead to currier movement. However, as the semiconductor 
device size becomes smaller, this effect can usually be ignored. The carrier transport 
phenomena are the foundation for finally determining the current-voltage character- 
istics of semiconductor devices. We will implicitly assume in this chapter that, 
though there will be a net flow of electrons and holes due to the transport processes, 
thermal equilihrium will not be substantially disturbed. Nonequilibrium processes 
will be considered in the next chapter. w 

5.1 1 CARRIER DRIFT 
An electric field applied to a semiconductor will produce a force on electrons and 
holes so that they will experience a net acceleration and net movement, provided 
there are available energy states in the conduction and valence hands. This net move- 
ment of charge due to an electric field is called driji. The net drift of charge gives rise 
to a drip current. 



5.1.1 Drift Current Density 

Ifwe have a positive volume charge density p moving at an average drift velocity ud,  
the drift current density is given by 

J,IQ = W,I (5.1) 

where J is in units of C/cm2-s or amps/cmz. If the volume charge density is due to 
positively charged holes, then 

Jpldr) = (ell)udp ( 5 4  

where J , d r ,  is the drift current density due to holes and ud,, is the average drift ve- 
locity of the holes. 

The equation of motion of a positively charged hole in the presence of an elec- 
tric field is 

F =m;u = eE (5.3) 

where e is the magnitude of the electronic charge, u is the acceleration, E is the elec- 
tric field, and m; is the effective mass of the hole. If the electric tield is constant, then 
we expect the velocity to increase linearly with time. However, charged particles in a 
semiconductor are involved in collisions with ionized impurity atoms and with ther- 
mally vibrating lattice atoms. These collisions, or scattering events, alter the velocity 
characteristics of the particle. 

As the hole accelerates in a crystal due to the electric field, the velocity in- 
creases. When the charged particle collides with an atom in the crystal, for example, 
the panicle loses most, or all, of its energy. The particle will again begin to acceler- 
ate and gain energy until it is again involved in a scattering process. This continues 
over and over again. Throughout this process, the particle will gain an average drift 
velocity which, for low electric fields, is directly proportional to the electric feld. 
We may then write 

U d p  = W& (5.4)  

where p, is  the proportionality factor and is called the hole mobility. The mobility is 
an important parameter of the semiconductor since it describes how well a particle 
will move due to an electric tield. The unit of mobility is usually expressed in terms 
of cm2/v-s. 

By combining Equations (5.2) and (5.4) .  we may write the drift current density 
due to holes as 

Jl,ldri = (ep)u,ip = el*,,pE (5.5)  

Thedrift current due to holes is in the same direction as the applied electric field. 
The same discussion of drift applies to electrons. We may write 

Jlildrf = p w n  = (-en)%, (5.6) 

where Jnldri is the drift current density due to electrons and udn is the average drift 
velocity of electrons. The net charge density of electrons is negative. 



C H A P T E R  5 Carrler Transport Phenomena 

Table 5.1 1 Typlcal mob~l~ty value3 at 7 = 300 K and luw dopmg 

Silicon 1350 480 
Gallium anenide 8500 400 
Germanium 3900 1900 

1 
The average drift velocity of an electron is also proportional to the electric fieh 

for small fields. However, since the electron is negatively charged, the net motiona 
the electron is opposite to the electric field direction. We can then write 

Udll = -pnE 

where w, is the electron mobility and is a positive quantity. Equation (5.6) may 
be written as 

The conventional drift current due to electrons is also in the same direction as h 
applied electric field even though the electron movement is in the opposite directia 

Electron and hole mobilities are functions of temperature and doping concenm 
tions, as we will see in the next section. Table 5.1 shows some typical mobility val 
ues at T = 300 K for low doping concentrations. 

Since both electrons and holes contribute to the drift cument, the total drifr c u m  
1 

densit). is the sum of the individual electron and hole drift current densities, so we mq 
write 

I J,i,i = e ( w  + p,,p)E I ( .  A 
EXAMPLE 5.1 I Objective 

To calculate the drift current density in a semiconductor for a given electric field. 
Consider a gallium arsenide sample at 7 = 300 K with doping concentrations of N, =! 

and Nd = 1016 ~ m - ~ .  Assume complete ionization and assume electron and hole mobiliq 
given in Table 5.1. Calculate the drift current density if the appliedelecuic field is E = IOVIC~ 

Solut ion 
Smce Nd z N;,, the semtconducn~r ic  n type and the majorlty Cdrrler electron ioncentratla 
from Chdpter 4 e glven by 

The mlnonty carner hole concentratmn is 
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For this extrinsic n-type ~emiconduclor, the drift current density is 

Jd,,  = e( lr , ,n + u,,p)E -- efi,, N,,E 

W Comment 
Significant drift current densities can be obteined inn semiconductor applying relatively small 
electric fields. We may note from this example that the drift current will usually he due pri- 
m a i l v  to the maioritv carrier in an extrinsic semiconductor. 

TEST YOUR UNDERSTANDING I 
Consider a sample of silicon at T = 300 K doped at an impurity concentration of 
Nd = lo'' cm-' and N, = lo1.' cm-'. Assume elcctrnn and hole mobilities given in 
Table5.1. Calculale the drift current density if the applied electric field is E = 35 Vlcm. 
(zwv'08'9 SUV) 
A drift current density of .Id,, = 120Ncm' is required in a particular semiconductor 
device usine p-type silicon with an applied electric lield of E = 20 Vkm. Deteni~ine 
the required impurity doping concentration to achieve this specification. Assume elec 
bon and hole mobilities given inTable 5.1. (, UJ v,OI X 181 = 'N = 'Id 'sub') 

5.1.2 Mobility Effects 

In the last section, we defined mobility, which relates the average drift velocity of a 
carrier to the electric field. Electron and hole mobilities are important semiconductor 
parameters in the characteriration of carrier drift, as seen in Equation (5.9). 

Equation (5 .3 )  related the acceleration of a hole to a force such as an electric 
held.ye may write this equation as 

where u is the velocity of the particle due to the electric field and does not include 
the random thermal velocity. If we assume that the effective mass and electric field 
are constants, then w e  may integrate Equation (5.10) and obtain 

where we have assumed the initial drift velocity to be zero. 
Figure 5 . la  shows a schematic model o f  the random thermal velocity and mo- 

tion of a hole in a semiconductor with zero electric field. There is a mean time he- 
tween collisions which may be denoted by r,,,. If a small electric field (E-field) is 
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--F 
E field 

(h) 

Figure 5.1 1 Typical random hehawor of a hole tn a wnmmductor (a) without an 
electric field and (b) w~th an electric field 

applied as indicated in Figure 5.lb. there will be a nct drift of the hole in the directiw 
of the E-field, and the net drift velocity will be a small perturbation on the random 
thermal velocity, so the time between collisions will not be altered appreciably. Ifwc 
use the mean time between collisions r,, in place of the time r in Equation (5.11), 
then the mean peak velocity just prior to a collision or scattering event is 

The average drift velocity is one half the peak value so that we can write 

However, the collision process is not as simple as this model, but is statisticalm 
nature. In a more accurate model including the effect of a sttiltistical distribution.ttu 
factor f in Equation (5.12b) does not appear. The hole mobility is then give11 by 

The same analysis applies to electrons; thus we can write the electron mobility as 

where r,,, is the mean time between collisions for an electron. 
There are two collision or scattering mechanisms that dominate in a semicon. 

ductor and affect the carrier mobility: phonon or lattice scattering, and ionized im. 
purity scattering. 

The atoms in a semiconductor crystal have a certain amount of thermal energy 
at temperatures above absolute zero that causes the atoms to randomly vibrate about 
their lattice position within the crystal. The lattice vibrations cause a disruption in @ 

I 
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perfect periodic potential function. A perfect periodic potential in a solid allows elec- 
trons to move unirnpcded. or with no scattering, through the crystal. But the thermal 
vibrations cause a disruption of the potential function, resulting in an interaction be- 
tween the electrons or holes and the vibrating lattice atoms. This lattice scattering is 
also referred to as phonon scuffering. 

Since lattice scattering is related to the thermal motion of atoms, the rate at 
which the scattering occurs is a function of temperature. If we denote p L  as the mo- 
bilit)~ that would be observed if only lattice scattering existed, then the scattering the- 
ory states that to first order 

Mobility that is due to lattice scattering increases as the temperature decreases. Intu- 
itively, we expect the lattice vibrations to decrease as the temperature decreases, 
which implies that the probability of a scattering event also decreases, thus increas- 
ing mobility. 

Figure 5.2 shows the temperature dependence of electron and hole mobilities in 
silicon. In lightly doped semiconductors, lattice scattering dominates and the carrier 
mobility decreases with temperature as we have discussed. The temperature depen- 
dence of mobility is proportional to T-".  The inserts in the figure show that the pa- 
rameter n is not equal to ; as the first-order scattering theory predicted. However, 
mobility does increase as the temperature decreases. 

The second interaction mechanism affecting carrier mobility is called ionized 
impurity scattering. We have seen that impurity atoms are added to the semiconduc- 
tor to control or alter its characteristics. These impurities are ionized at room tem- 
pereture so that a coulomb interaction exists between the electrons or holes and the 
ionized impurities. This coulomb interaction produces scattering or collisions and 
also alters the velocity characteristics of the charge canier. If we denote M I  as the 
mobility that would be observed if only ionized impurity scattering existed, then to 
first order we have 

where Nr = Nd+ + N; is the total ionized impurity concentration in the semicon- 
ductor. If temperature increases, the random thermal velocity of a carrier increases, 
reducing the time the carrier spends in the vicinity of the ionized impurity center. The 
less timespent in the vicinity of a coulomb force, the smaller the scattering effect and 
the larger the expected value of p,. If the number of ionized impurity centers 
increases, then the probability of a carrier encountering an ionized impurity center 
increases, implying a smaller value of p,. 

Figure 5.3 is a plot of electron and hole mobilities in germanium, silicon, and 
gallium arsenide at T = 300 K as a function of impurity concentration. More accu- 
rately, these curves are of mobility versus ionized impurity concentration N,. As 
[he impurity concentration increases, the number of impurity scattering centers in- 
creases, thus reducing mobility. 
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Figure 5.3 1 Electron and hale rnobilitics versus impurity 
concentrations for germanium, silicon. and gallium 
arsenide at T = 300 K. 
(From S;u l I2I.J 

TEST YOUR UNDERSTANDING 

(a) Using Figure 5.2, find the electron mobility For ( i )  N,, = ~~~~~~~'. T = 150'C 
and (ii) N,! = 101%m-3, T = OC. (h) Find the hole mobilities for ( i )  N,, = 
101hcm-i, T = 50.C; and(ii) N,, = 10'' cm->, T = 150•‹C. 
[S-Nc~~OOZ-- (!!I '';-AIZW3 0%- (!) ( 4 )  :'-AIrLU300SI- (!!) '"NzwJ 005 (!) (") 'sUV1 
Using Figure 5.3, determine the electron and hole mobilities in (a) silicon for 
Nd = lOl5 cm-'. N,, = 0; (b )  silicon for N,, = 10'' an- ' ,  N,, = 5 x 1016 cm-'; 
(c) silicon for N,, = 10'' cm-', N,, = 10'' cm ; and ( d l  GaAs for 
Nd = N,, = 10 '7cm~' .  [S-AlzUJ OZZ i; "7f '00SP zz " ~ f  ( P I  
!O[E ii. "'()OR 2 "d ( 2 )  :OOE i; "77 'OOL i; "d (4) ! 0 8 ~  = "71 ' O S ~ I  ';- "d  (v) .SUV] 

If rL is the mean time between collisions due to lattice scattering, then r l t l r ~  is 
the probability of a lattice scattering event occurring in a differential time dt. 
Likewise, if r, is the mean time between collisions due to ionized impurity scattering, 
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then dr /TI is the probebility of an ionized impurity scattering event occurring in rh. 
differential time d t .  If these two scattering processes are independent, then the  tot.^ 

probability of a scattering event occurring in the differential time dt  is the sum ofth 
individual events, or 

d t  d t  dt ---  
- +- (5.1. 

T TI TL 

where r is the mean time between any scattering event. 
Comparing Equation (517) with the definitions of mobility given by Equ;. 

tion (5.13) or (5.14), we can write 

where W I  is the mobility due to the ionized impurity scattering process and p~ isth. 
mobility due to the lattice scattering process. The parameter ir is the net mobilk! 
With two or more independent scattering mechanisms, the inverse mobilities add 
which means that the net mobility decreases. 

5.1.3 Conductivity 

The drift current density, given by Equation (5.9). may be written as 

where rr is the conductivity of the semiconductor material. The conductivity is gibe' 
in units of (R-cm)-' and is a function of the electron and hole concentrations and mi' 
bilities. We havejust seen that the mobilities are functions of impurity concentration, 
conductivity, then is a somewhat complicated function of impurity concentration. 

The reciprocal of conductivity is resistivity, which is denoted by p and is gi!? 
in units of ohm-cm. We can write the formula for resistivity as 

Figure 5.4 is a plot of resistivity as a function of impurity concentration in silicor 
germanium, gallium arsenide, and gallium phosphide at T = 300 K. Obviously, th, 
curves are not linear functions of Nd or N,, because of mobility effects. 

If we have a bar of semiconductor material as shown in Figure 5.5 with a volt 
age applied that produces a current I, then we can write 

I 
.I- (5.212 

A 
and 



lmpurtty concentration ( ~ r n - ~ )  

111" 1015 10'" 1017 10" 10" 

Impurity concentration (cm-') 

Figure 5.4 1 Resistivity versus impurity concentration at T = 300 K in (a) silicon 
and (b) germanium, gallium arsenide, and gallium phosphide. 
(Fmm Sze 1/21.) 
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Figure 5.5 1 Bar of semiconductor material as a resistor. 

We can now rewrite Equatlon (5.19) as 

Equation (5.22b) is Ohm's law for a semiconductor. The resistance is a function of1 
resistivity, or conductivity, as well as the geometry of the semiconductor. 

If we consider. for example, a p-type semiconductor with an acceptor doplng 
N,,(Nd = 0) in which N ,  >> n i ,  and if we assume that the electron and hole mubili. 
ties are of the same order of magnitude, then the conductivity becomes 

If we a lw  dscume complete ionlzatmn, then Equation (5.23) becomes 

The conductivity and resistivity of an extrinsic semiconductor are a function pri- 
marily of the majority carrier parameters. 

We may plot the carrier concentration and conductivity of a semiconductor ass/ 
function of temperature for a particular doping concentration. Figure 5.6 shows the 
electron concentration and conductivity of silicon as a function of inverse temperatutt 
for the case when N d  = 10'' cm-'. In the midtemperature range, or extrinsic range, 
as shown, we have complete ionization-the electron concentration remains essen- 
tially constant. However, the mobility is afunctionof temperature so the conductivity 
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varies with temperature in this range. At higher temperatures, the intrinsic cattier con- 
centration increases and begins to  dominate the electron concentration as well as the 
conductivity. In  the lower temperature range, freere-out begins to occur; the electron 
concentration and conductivity decrease with decreasing temperature. 

O b j e c t i v e  I EXAMPLE 5.2 

500 T (K) 
10001 300 200 100 75 

To determine the doping concentration and majority cattier mobility given the type and con- 
ductivity of a cnmpensated semiconductor 

Consider compensated n-type silicon at T = 300 K, with a conductivity of n = 
16(Q-cm)' and an acceptor doping concentration of 10" cm-'. Determine thc dunur con- 
centration and the electron mobility. 

10 _ - 
E 

0 "  

- 
; I"'" 
E - 
c 

I Solution 
For n-type silicon at 7 = 300 K, we can assume complete ionization; therefore the conductiv- 
ity, assuming Nd - N,, >> n, , is given hy 

q. a = e w z  = e&,,iN,r - N , )  

We have that 

16 = ( 1  6 x IO'~)/L, , (N, ,  - 10") 

.- - 
1015 

u 

B 
C 
E: - : 10'" - 
W 

101) 

I, 
- 

Since mobility is a function of the ionized impurity cnncentration. we can use Figure 5.3 dung 
with trial and error to determine w,, and N , .  For example, if we choose Nd = 2 x 10". then 

I 

I I\ 
- 1  
I I : ,'# 

> 

I !  \ ' 8' + , 
I 
I 
I "i , 

8 I 

1 
I 
I 
I , , 

0 4 8 12 16 20 

E(K-') 
i 

J 
Figure 5.6 I Electron concentration and conductivity versus 
inverse temperature for silicon. 
(Afirr  S i u  il2I.I 

- 
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N, = N,i + N ;  = 3 x 10'' so that jr,, c 510 c m ' ~ - s  which gives a = 8.16 
If we choose N,, = 5 x 10". then N, = 6 x 10" so thal p ,  z 325 cm'lv-s, 
n = 20.8 (R-cm)-'. The doping is hounded between these two values. Funhcr trial and e 
y~elds 

Nd - 3.5 x 10" cm-' 

and 

p,, c 400 cm2/v-s 

w h ~ h  ewe5 

o z 16 (a-cm)- '  

Comment 
We can see from this cxample that. in high-conductivity aemicunductor material. mohility is, 
strong function of carrier concentration 

DESIGN 
EXAMPLE 5.3 

I Objective 

To design a semiconductor resistor with a specified resistance to handle a given current de 
Asilicon semiconductur at T = 300 K is initially doped with donors at a concentrati 

Nd = 5 x lo t5  cm-'. Acceptors are to be added to form a compensated p-type rnaterial 
resistor is to have a rcsistancc of 10 kn and handle a current density of 50 Alcm' whcn 5 
applied. 

Solution 
For 5 V applied to a 10-kR resistor, the total current is 

If the current density is limited to 50Alcm" then the cross-sectional area is 

If we, somewhat arbitrarily a1 this point, limit the electric field to E = 100 Vicm, the 
length of the resistor is 

From Equation (5.22b). the conductivity or the semiconductor is 

The conductivity of a compensated p-type semiconductor is 

where the mahility is a function of the total ionized impurity concentration N,, + N,,. 



Using trial and error, if N, = 1.25 x 10Ih cm-'. then N,, + Nd = 1.75 x 1016 cm-', 
and the hole mobility, from Figure 5.3, is approximately p ,  = 410 cm21V-s. The conductivity 
is then 

which is very close to the value we need 

I Comment 
Since the mobility is related to the total ionized impurity concentration, the determination of 
the impurity concentration to achieve a particular conductivity is not straichtforward. 

TEST YOUR UNDERSTANDING 

E5.5 Silicon at T = 300 K is doped with impurity concentrations of N,, = 5 x 1016 cm-' 
and N,, = 2 x 10j6 cm-'. (a) What are the electron and hole mobilities? (b )  Deter- 
mine the conductivity and resistivity of the material. [">-U 8020 = d 
' ,-(U3-u) 8.P = 0 (9) ! S - N , U 3  OSE = ''V 'S-NzU12 0001 = "d (0) 'SUV] 

E5.6 For a particular silicon semiconductor device at T = 300 K, the required material is 
n type with a resistivity of 0.10 Q-cm. (a)  Detzrmine the required impurity doping 
concentration and (b) the resulting electron mobility. 
[ s - ~ p q j 9  - "d (q) ' E - ~ 3  u,O1 x 6 = PN 'PS am813 word ( n )  'suv] 

E5.7 A bar of p-typc silicon, such as shown in Figure 5.5, has a cross-sectional area of 
A = 1W6 cm2 and a length of L = 1.2 x lo-' cm. For an applied voltage of 5 V, a 
current of 2 mAis required. What is the required (a )  resistance, (b)  resistivity of the 
silicon, and (c) impurity doping concentration? 
l,+3 i,u~ x i = "N (4 ' u l w  RO'Z (4) ' 3 7  S'Z ("1 .suvl 

For an intrinsic material, the conductivity can b e  written as 

The concentrations o f  electrons and holes are equal in a n  intrinsic semiconductor, so  
the intrinsic conductivity includes both the electron and hole mohility. Since, in gen- 
eral, the electron and hole mobilities are not equal, the intrinsic conductivity is not 
the minimum value possible a t  a given temperature. 

5.14 Velocity Saturation 

So far inour discussion of  drift velocity, w e  have assumed that mobility is not a func-  
tion of electric field, meaning that the  drift velocity will increase linearly with ap- 
plied electric field. The total velocity of a particle is the sum of the  random thermal 
velocity and drift velocity. At T = 300 K, the  average random thermal energy is 
given by 
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Electric field (V/cm) 

Figure 5.7 1 Carrier drift velocity versus electric field for 
high-purity silicon. germanium, and gallium arsenide. 
1Fmm S;e l I2I.i 

This energy translates into a mean thermal velocity of approximately 10' cm/s foran 
electron in silicon. If we assunic an electron mobility of M,, = 1350 cm2/V-s in  low^ 
doped silicon, a drift velocity of 10' cm/s, or I percent of the thermal velocity, i k  

achievcd if the applied electric field is approximately 75 Vlcm. This applied elecmc 
field does not appreciably alter the energy of the electron. 

Figure 5.7 is a plot of average drift velocity as a function of applied electric field 
for electrons and holes in  silicon, gallium arsenide, and germanium. At low electric 
fields, where there is a linear variation of velocity with electric field, the slope ofthe 
drift velocity versus electric field curve is the mobility. The behavior of the drift ve- 
locity of carriers at high electric fields deviates substantially from the linearrelation- 
ship observed at low fields. The drift velocity of electrons in silicon, for example. 
saturates at approximately 10' cmls at an electric field of approximately 30 kVlcm. 
If the drift velocity of a charge carrier saturates, then the drift current density also 
saturates and becomes independent of the applied electric field. 

The drift velocity versus electric field characteristic of gallium arsenide is I& 
complicated than for silicon or germanium. At low fields, the slope of the drift ve- 
locity versus E-field is constant and is the low-field ele~xron mobility, which is ap- 
proximately 8500 c m 2 / ~ - s  for gallium arsenide. The low-field electron mobility in 
gallium arsenide is much larger than in silicon. As the field incrcases, the electron 
drift velocity in gallium arsenide reaches a peak and then decreases. A differential 
mobility is the slope of the u,, versus E curve at a particular point on the curve and 
the negative slope of the drift velocity versus electric field represents a negative diI- 
ferential mobility. The negative differential mobility produces a negative differential 
resistance; this characteristic is used in the design of oscillators. 



5.2 Carrier Diffusion 

/ G;AI I Conduction 
hand 

Figure 5.8 1 Energy-hand structure 
for gallium arsenide showing the 
upper valley and lower valley in 
the conduction band. 
(From S z  [I.?].) 

The negative differential mobility can be understood by considering the E versus 
k diagram for gallium arsenide, which is shown again in Figure 5.8. The density of 
states effective mass of the electron in the lower valley i sm& = 0.067mo. The small 
effective mass leads to a large mobility. As the E-field increases. the energy of the 
electron increases and the electron can be scattered into the upper valley, where the 
density of states effective mass is 0.55mo. The larger effective mass in thc upper 
valley yields a smaller mobility. This intervalley transfer mechanism results in a de- 
creasing average drift velocity of electrons with electric field, or the negative differ- 
ential mobility chilracteristic. 

-6. 
5.2 1 CARRIER DIFFUSION 
There is a second mechanism, in addition to drift, that can induce a current in a semi- 
conductor. Wemay consider a classic physics example in which a container, as shown 
inFigure 5.9, is divided into two parts by a membrane. The left side contains gas mol- 
ecules at a particular temperature and the right side is initially empty. The gas mole- 
cules are in continual random thermal motion so that, whcn the membrane is broken, 
the gas molecules How into the right side of the container. Diffusiorl is the process 
whereby panicles flow from a region of high concentration toward a region of low 
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Figure 5.9 1 Contamer 
d~v~ded by a membrane wlth 
gas molecules on one ~ l d e  

ie d 
x = 0. If the distance 1 shown in Figure 5.10 is the mean-free path of an electron, 
is, the average distance an electron travels between collisions (I = u,i,r,,,), then 
the average, electrons moving to the right at x = -[and electrons moving to the 
at x = +I will cross thex = 0 plane. One half ofthe electrons at x = -I will be 3 
eling to the right at any instant of time and one half of the electrons at x = +I will d 
traveling to the left at any given time. The net rate of electron flow, F,,, in the 

Figure 5.10 1 Electron concentration versus distance. 

concentration. If the gas molecules were electrically charged, the net flow of ch 
would result in a diffusion current. 

5.2.1 Diffusion Current Density 

To begin to understand the diffusion process in a semiconductor, we will consi~ 
simplified analysis. Assume that an electron concentration varies in one dimensic 
shown in Figure 5.10. The temperature is assumed to be uniform so that the ave 
thermal velocity of electrons is independent of x. To calculate the current, we wil 
termine the net Row of electrons per unit time per unit area crossing the plat 
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direction at x = 0 is given by 

If we expand the electron concentration in a Taylor series about x = 0 keeping 
only the first two terms, then we can write Equation (5.27) as 

which becomes 

dn 
F,, = -u,l,/ - 

dx 

Each electron has a charge (-el, so the current 1s 

The current descrihed by Equation (5.30) is the electron diffusion current and is pro- 
portional to the spatial derivative, or density gradient, of the electron concentration. 

The diffusion of electrons from a region of high concentration to a region of low 
concentration produces a flux of electrons flowing in the negative x direction for this 
example. Since electrons have a negative charge, the conventional current direction 
is in the positive x direction. Figure 5.  I l a  shows these one-dimensional flux and cur- 
rent directions. We may write the electron diffusion current density for this one- 
dimensional case. in the form 

where D,, is called the electron dflusiusion co~$Jicienr, has units of crn'ls, and is a pos- 
itive quantity. If the electron density gradient becomes negative, the electron diffu- 
sion current density will be in the negative x direction. 

Figure 5.1 1b shows an example of a hole concentration as a function of distance 
in a semiconductor. The diffusion of holes, from a region of high concentration to a 
region of low concentration, produces a flux of holes in the negative x direction. 
Since holes are positively charged particles, the conventional diffusion current den- 
sity is also in the negative x direction. The hole diffusion current density is propor- 
tional to the hole density gradient and to the electronic charge, so  we may write 
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Hole diffusion 
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Figure 5.11 1 (a) Diffusion of electrons due to a densily 
gradient. (b) Diffusion of holes due to a densily gradient. 

for the one-dimensional case. T h e  parameter D, is called the hole d~ffu.sion cor 
cirnt, has units of cm2/s, and is a positive quantity. If the hole density gradient 
comes negative, the hole diffusion current density will be in the positive x directi 3 

EXAMPLE 5.4 I Objective 

To calculate the diffusion current density given a density gradient. 
Assumc that. in an n-typc gallium arsenide semiconductor at T = 300 K, the eke 1 

concentration varies linearly from 1 x 10'' to7 x 10" cm-' over a distance of 0.10 cn~  CJ 
culate the diffusion current density if the electron diffusion coefficient is D,, = 225 crn'/,~ 

H Solution 
The diffusion current density is given by 

H Comment 
A significant diffusion current density can be generated in a semiconductor material 
a modest density gradient. 

1 
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TEST YOUR UNDERSTANDING 1 
E5.8 The electron concentration in silicon is given byn(x)  = 10" r ' " ' L , b l  cm-' (r ? 0) 

where L, = 1 0  ' cm. The electron diffusion coefficient is U,, = 25 cm'ls. Determine 
the electron diffusion current density at (n) .Y = 0, ( b )  x = 1 0-4 cm, and ( r )  x i. oc. 

4 [O ( J )  . p r +  LVI - (q)  Lzwv OP- (17) .SUVI 

E5.9 The hole concentration in silicon varies lincarly from I = 0 to x = 0.01 cm. The 
hole diffusion coefficient is D, = 10 cm2/s, the hole diffusion current denhity is 
20A/cm2, and the hole concentration at x = 0 is p = 4 x 10" cm-'. What is the 
value of the hole concentration at .x = 0.01 cm? ( 1-"3 1101 X SL'Z '"V) 

E5.10 The hole concentratian in ~ilicun is given by p(r) = 2 x 10'Se~(r'Ln)cm-3 
( x  ? 0). The hale diffusion coefficient is D - IOcm'ls. The value of the diffusion 

,- current density at r = 0 is = +6.4A/cm-. What is the value of L,,? 
(m2 *-01 x 5 = "7 suv)  

5.2.2 Total Current Density 

We now have four possible independcnt current mechanisms in a semiconductor. 
These components are electron drift and diffusion currents and hole drift and diffu- 
sion currents. The total current density is the sum of these four components, or, for 
the one-dimensional case, 

This equation may he generalized to three dimensions as 

The electron mobility gives an indication of how well an electron moves in a 
semiconductor as a result of the force of an electric field. The electron diffusion co- 
efficient gives an indication of how well an electron moves in a semiconductor as a 
result of adensity gradient. The electron mobility and diffusion coefficient are not in- 
dependent parameters. Similarly. the hole mobility and diffusion coefficient are not 
independent parameters. The relationship between mobility and the diffusion coefh- 
cient will be developed in the next section. 

The expression for the total current in a semiconductor contains four terms. For- 
tunately in most situations, we will only need to consider one term at any one time at 
a particular point in a semiconductor. 

5.3 1 GRADED IMPURITY DISTRIBUTION 
In most cases so far, we have assumed that the semiconductor is uniformly doped. In 
many semiconductor devices, howcver, thcre may be regions that are nonunifonnly 
doped. We will investigate how a nonuniformly doped semiconductor reaches thermal 
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equilihrium and, from this analysis, we will derive ihe Einstein relation, which re1 
mobility and the diffusion coefficient. 

5.3.1 Induced Electric Field I 
Consider a semiconductor that is nonunifnrmly doped with donor impurity atoms4 
the semiconductor is in thermal equilibrium, the Fermi energy level is co! 

through the crystal so the energy-band diagram may qualitatively look like ::I. 

shown in Figure 5.12. The doping concentration decreases as.r increases in thih L.nr 

There will be a diffusion of majority carrier electrons froln the region of his11 cur 
centration to the region of low concentration, which is in the +x direction. Thu llo, 
of negative electrons leaves behind positively charged donor ions. The separiitloii I 
positive and negative charge induces an electric field that is in a direction to ol'lw 
the diffusion process. When equilibrium is reached, the mobile carrier concent~mo 
is not exactly equal to the fixed impurity concentration and the induced electric 11d 
prevents any further separation of charge. In most cases of interest, the space c11.1r: 
induced by this diffusion process is a small fraction of the impurity concentratla 
thus the mobile carrier concentration is not too different from the impurity 
density. 

The electric polential @ is related to electron potential energy by the ch 
( - e ) ,  so we can write 

The electric field for the one-dimensional situation is defined as 

Figure 5.12 I Encrfy-banddiagram for 
a semic~~nduclor in thermal equilihrium 
with a nonuniform donor impurity 
concentration 
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If the intrinsic Fermi level changes as a function of distance through a semiconduc- 
tor in thermal equilibrium, an electric field exists in the semiconductor. 

If we assume a quasi-neutrality condition in which the electron concentration is 
almost equal to the donor impurity concentration, then we can still write 

Solving for EF - E F , ,  we obtain 

The Fermi level is constant for thermal equilibrium so when we take the derivative 
with respect to x we obtain 

Theelectric field can then be written, combining Equations (5.39) and (5.36), a7 

Smce we have an electric field, there will be a potential difference through the semi- 
conductor due to the nonuniform doping. 

Objective I EXAMPLE 5.5 

Todetermine the induced electric field in a semiconductor in thermal equilibrium, @\,en a lin- 
ear variation i n  doping concentration. 

Assume that the donor concentration in an n-type semiconductor at T = 100 K is given by 

N,(x) = 10'" i0lyx (cm-') 

uherex 1s glven in cm dnd range\ hetween 0 5 r 5 I p m  

I Solution 
Takmg the denvatwe of the donor concentrdtlnn, we have 

Theelectric field is given hy Equation (5.40). so we have 

Atx = 0, for exampic, wc find 

E, = 25 9 V/cm 
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w Comment 
We may recall from our previous discussion of drift current that fairly small electric tields 
produce higniiicant drift current densities, so [hat an induced electric field from nonuni 

5.3.2 The Einstein Relation 

If we consider the nonuniformly doped semiconductor represented by the ene 
band diagram shown in Figure 5.12 and assume there are no electrical connection 
that the semiconductor is in thermal equilibrium, then the individual electron 
hole currents must be zero. We can write 

If we assume quasi-neutrality so that n % NN,,(.x), then we can rewrite 
tion (5.41) as 

Equation (5.43) is valid for the condition 

D, kT ---  - 
P" e 

The hole current must also be zero in the semiconductor. From this condi 
we can show that 

- 
k T ! ! -  

P 

Combining Equations (5.44a) and (5.44b) gives 

the Ei~isteirt relurion. 



5.4 The H a  Effect 

Table 5.2 1 Typical mobility and diffusion coefficient values at 
T = 300 K ( i ~  = cm2N-s and 0 = cm'is) 

fim D. a 4 
Silicon 1350 35 480 12.4 
Gallium arsenide 8500 220 400 10.4 
Gcrmanium 3900 101 1900 49.2 

Objective 1 EXAMPLE 5.6 

Todetennine the diffusion coefficient given the carrier mobility. Assumc that thc mobil~ 
ity of a particular carrier is 1000 cm'N-s at T = 300 K. 

Solution 

f 
Using the Einstein relation. we havc that 

D = - 11 = (0.0259)(1000) = 25.9 crn2/s ("I) 
Comment  
Although this example is fairly simple and straightforward. it is importanr ro keep in ,mind the 
relative orders of magnitude oi the mobility and diffusion coefficient. The diffuGon coefficient 
is approximately 40 times smaller than the mobility at room temperature. 

Table 5.2 shows the diffusion coefficient values at T = 300 K corresponding to 
the mobilities listed in Table 5.1 tor silicon. gallium arsenide. and germanium. 

The relation between the mobility and diffusion ccefficient given by Equa- 
tion (5.45) contains temperature. It is important to keep in mind that the major tem- 
perature effects are a result of lattice scattering and ionized impurity scattering 
processes, as discussed in Section 5.1.2. As the mobilities are strong functions of 
temperature because of the scattering processes, the diffusion coefficients are also 
strong functions of temperature. The specific temperature dependence given in Equa- 
lion (5.45) is a small fraction of the real temperature characteristic. 

5 . 4  1 THE HALL EFFECT 
The Hall effect is a consequence of the forces that are exerted on moving charges by 
electric and magnetic fields. The Hall effect is used to distinguish whether a semi- 
conductor is n type or p type1 and to measure the majority carrier concentration and 
tnajority carrier nlobility. The Hall effcct device, as discussed in this section, is used 
to experimentally measure semiconductor parameters. However, it is also used 
extensively in engineering applications as a magnetic probe and in other circuit 
applications. 

'We will assume an extrinsic semiconductor material i n  which the rmajority carrier concentration is much 
I er than the minority carrier concentration. "k 
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Figure 5.13 1 Geometry for rneasurmg the Hall effect 

The force on a particle having a charge q  and moving in a magnetic field 
given by 

F = q u x B  (5.1 

where the cross product is taken between velocity and magnetic field so that the fox 
vector is perpendicular to both the velocity and magnetic field. 

Figure 5.13 illustrates the Hall effect. A semiconductor with a current I, 
placed in a magnetic field perpendicular to the current. In this case, the magnetic fie: 
is in the i direction. Electrons and holes flowing in the semiconductor will exper 
ence a force as indicated in the figurc. The force on both electrons and holes is intl 
(-y) direction. In a p-type semiconductor (po > no), there will be a buildup of po 
itive charge on the y = 0 surface of the semiconductor and. in an n-type sernico~ 
ductor ( n o  > PO),  there will be a buildup of negative charge on the ?. = 0 surfac 
This net charge induces an electric field in the y-direction as shown in the figure.: 
steady state, the magnetic held force will he exactly balanced by the induced electr 
field force. This balance may be written as 

F = q [ E + u x B ] = O  ( 5  47 

wh~ch  becomes 

q ~ ,  = qu,  B- ( 5  471 

The induced electric field in the y-direction is called the Hallfield. The Hall fie 
produces a voltage across the semiconduclor which is called the Hull voltrrgr. Wecr 
write 

VH = +EH W (5.4; 



CHAPTER 5 Carrler Transpolt Phenomena 

T h e  hole mobility is then glven b y  

1, L 
Lr - - 
" - ',I VL Wd 

Similarly for  an n-type semiconductor, the low-field electron mobility is determi 
from 1 

EXAMPLE 5.7 I O b j e c t i v e  

To determine the majority carrier concentration and mobility. g i x n  Hall effect parameter 
Consider the geometry shown in Figure 5 . 1 3  Let L = 10-' crn, W = 1W2 cm, 

d = I O  ' cm. Also assume that I ,  = 1.0 mA, V, = 12.5 V, B: = 500 gauss = 5 x 10-I 1 

and V, = -6.25 mV. 1 
Solution 

A negative Hall voltage for this geometry implics that we have an n-type semicondu 
Using Equation (5.54). we can calculate the electron concentration as 

The electron mohilily is then determined from Equation (5.58) as 

( 1 0 - ~ ) ( 1 0 - ~ )  
= 0. I0 rn'lv-s 

IL" = (1.6 x 10 19)(5 x 10~1)(12.5)(10-4)(105)  

or 

u,, = 1000 c m ' ~ - s  

Comment 

to vield correct results. 

1 
It is important to notc that the MKS units must be used consistently in the Hall cffectequat 

5.5 1 SUMMARY r 
The two basic transport mechanisms are drift, due to an applied electric field. and 
diffusion. due to a density gradient. 
Carriers reach an average driti velocily in the presence of an applied electric field, dl 
to scattering events. Two scattering proccsscs within a semiconductur are lattice 
scattering and impurity scattering. I 
The average drift velocity is a linear function of the applied electric field for small 
values of electric field, hut the drift velocity reaches a saturation limit that is on the 
order o r  10' ctnls at high electric fields. 1 



1 Carrier mobility i~ the ratio of the average drift velocity and applied elechic field. The 
electron and hole mobilities are functions of temperature and of the ionized impurity 
mncentration. 

1 The drift current density i~ thc pnduct of conducti~rity and electric field (a form of 
Ohm's law). Conductivity is a function of the carrier concentrations and mobilities. 
Resistivity is the inverse of conductivity 

1 The diffmion cunent density is proportional to the carrier diffusion coefficient and the 
canier density gradient. 

1 The diffusion coefficient and mobilitv are related throuph the Einstein relation. - 
I The Hall effect IS a consequence of a charged carner moving m the pre5ence of 

perpendicular electnc and magnetc fields The charged Larrrer is deflected. lnducmg 
~ ~ 

a Hall voltage. The polarity of the Hall voltage is a function of the semiconductor 
conductivity type. The majority carrier concentration and mobility can he determined 
from the Hall voltage. 

GLOSSARY OF IMPORTANT TERMS 
conductivity A material parameter related to carrier drift; quanlitatively, the ratio of drift 

current density to electric field. 
difision The process whereby particles flow from a region of high concentration to a region 

of low concentration. 

diffusion coefficient The parameter relating particle Run to the particle density gradient. 

diffusioncurrrnt The current that results from the diffusion o i  charged particle?. 

drift The process wherehy charged particles move while under the influence of an electric 
field. 

drift current The cunent that results from the drift o f  charged particles. 

drift velocity The average velacity of charged particles in the presence of an electric field. 

Einstein rrlation The relation between the mobility and the diffusion coefficient. 

Hall voltage The voltage induced across a semiconductor in a Hall effect measurement. 

ionized impurity scattering The interaction between a charged carrier and an ionized 
impurity center. 

latticescattering The interaction between a charged carrier and a thermally vibratinglattice 
atom. 

mobility The parameter relating carrier drift velocity and electric field. 

resistivity The reciprocal of conductivity; a material parameter that is a measure of the 
resistance to current. 

velwity saturation The saturation of canier drift velocity with increasing electric field. 

CHECKPOINT 
After srudytng this chapter, the reader \hould have the ab~lrty to 

1 Discuss carrier drift current density. 
I Explain why carriers reach an average drift velocity in the presence of an applied 

electric field. 
1 Discuss the mechanisms of lattice scattering and impurity scattering. 
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H Define mobility and discuss the temperature and ionized impurity concentration 

dependence rm mobility. 
Define conductivity and resistivity. 

H Discuss velocity saturation. 
H Discuss carrier diffusiun current density. 
H State the Einstein relation. 
H Descrihc the Hall effect. 

REVIEW QUESTIONS 
1. Write the equation for the total drift current density. 

2. Define carrier mobility. What is the unit of mobility'? 

3. Explain the temperature dependence of mobility. Why is the carrier mobility a fun& 
of the ionized impurity concentrations? 

4. Define conductivity. Define resistivity. What are the units of conductivity and resistiu 

5. Sketch the drift velocity of electrons in silicon versus electric field. Repeat for GaAi 

6. Write the equations for the diffusion current densities of electrons and holes. 

7. What is the Einstein relation? 

8. Describe the Hall effect. I 

9. Explain why the polarity of the Hall voltage changes depending on the conductivity 
(n  type or p type) of the semiconductor. 

PROBLEMS 
(Note; Use the xmiconductor parameters given in Appendix B if the parameters an 
specifically given in a problem.) 

Section 5.1 Carrier Drift i 
5.1 Consider a homogeneous gallium arsedide semiconductor at T = 300 K with Nd 1 

10" cm-' and Ng, = 0.  ( a )  Calculate thc thermal-equilibrium values of electron d 
hole concentrations. (b)  For an applied E-field of 10 Vlcm. calculate the drift cum 
dcnsity. (c) Repeat parts ( a )  and (h )  if N,, = 0 and N,, = 10'%m-'. 

5.2 A silicon crystal having a cross-sectional area of0.001 cm'and a length of 10-3c1 
connected at its ends to a 10-V battery. At T = 100 K,  we want a current of 100 n 
in the silicon. Calculate: (a) the required resistance R. (hi the required conductivit 
(c) the density of donor atoms to be added to achieve this conductivity. and ( d )  6% 
concentration of acceptor atoms to be added to form a compensated p-type materii 
with the conductivity given from part ( h )  if the initial concentmtion of donor atom 
N - lo15 cm-3, 

i, - 
5.3 (a)  A silicon semiconductnr is in the shape of a rectangular har with a cross-sectia 

area of I00 ,rm'. a length of 0.1 cm. and is doped with 5 x 10'" cm-' arsenic alot 
The temperature is T = 300 K. Determine the current if 5 V is applied across the 
length. (b) Repeat part (n) if the length is reduced to 0.01 cm. ( c )  Calculate the 
average drift velocity of electrons in parts (a) and (h) .  

5.4 (a)  A GaAs semiconductor resistor is doped with acceptor impurities at a concenu 
tion of N, = 10" cm-'. The cross-sectional area is 85 pm'. The current in the 



Problems 

resistor is to be I = 20 mA with 10 V applied. Determine the rcquired length of the 
device. (h) Repeat part (n)  for silicon. 

5.5 (a)Thrcc volts is applied across a I-cm-long semiconductor bar. The average electron 
drift velocity is 10'cmls. Find therlrctron mobility. (b) If the electron mobility in 
part (a) were 800 cm2N-s, what is the average electron drift velocity? 

5.6 Use the velocity-field relations for silicon and gallium arsenide shown in Figure 5.7 
to determine the transit time of electrons through a I-jcm distance in these materials 
for an electric field of (a) 1 kV1cm and (h) 50 kV/cm. 

5.7 Apetiectly compensated semiconductor is one i n  which the donor and acceptor impu- 
rity concentrations are exactly equal. Assuming complete iuni~ation, determine the 
conductivity of silicon at T = 300 Kin which the impurity concentrations are 
(a) N, = Nd = I ~ ' % K '  and (b)  N, = Nd = 10IRcm '. 

5.8 (a)  In a p-type gallium arsenide semiconductor, the conductivity is o = 5 (Q-cm)-' 
at T = 300 K. Calculate the thermal-equilibrium values of the electron and hole 
concentrations. (h) Repeat part ( a )  lor n-type silicon if the resistivity is p = 8 a-cm. 

5.9 In a particular semiconductor material, u,, = 1000 cm2N-s, f i ,  = 600 cni'N-s, and 
Nc = N ,  = 10" cm-'. These parameters arc independent of temperature. The 
measured conductivity of the intrinsic material is o = lo-' (R-cm)-' at T = 300 K .  
Find the conductivity at T = 500 K. 

5.10 (a)  Calculate the resistivity at T = 300 K of intrinsic (i) silicon, (ii) germanium. and 
(iii) gallium arsenide. (b) If rectangular semiconductor bars are fabricated using thc 
materials in part (a), determine the resistance of each bar if itscross-sectional area is 
85 @m' and length is 200 p m .  

5.11 An n-type silicon sample has a reiistivity of 5 a -cm at T = 300 K. (a) What is the 
donor impurity concentration? (h) What is the expected resistivity at (i)  T = 200 K 
and (ii) T = 400 K. 

5.12 Consider silicon doped at impurity concentrations of N ,  = 2 x 10" cm-' and N,, = 0. 
An empirical expression relating electron drift velocity to electric held is gi\,en by 

where u , , ~  = 1350 cm'N-s, u,,, = 1.8 x 10' cmls, and E is given in Vlcm. Plot 
electron drift current density (magnitude) versus electric field (log-log scale) over thc 
range 0 5 E 5 lo6 Vlcm. 

5.13 Consider silicon at T = 300 K. Assumc the electron mobility is b,, = 1350 cm'lv-s. 
The kinetic energy of an electron in the conduction band is (1/2)m: u i ,  where m; is 
the effective mass and v,, is the drift velocity. Detenninc the kinetic energy of an 
electron in the conduction band if the applied electric field is ( a )  10 Vlcm and 
(b)  I kVlcm. 

5.14 Consider a scmiconductor that is uniformly doped with Nd = 10" cm-' and N, = (1, 
with an applied electric field of E = 100 Vlcm. Assume that p,, = 1000 cm2N-s and 
N,, = 0. Also assume the following parameters: 

N ,  = 2 r l 0 ' ~ ( ~ / 3 0 ) ) ~ '  cm-) 

N,,  = 1 x 1 0 ' " ( ~ / 3 0 0 ) ~ " c m ~ '  

E, = 1.10eV 
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(a)  Calculate the electric-current density at T = 300 K. (b) At what temperaturewil 
this cuncnt increase by 5 percent? (Assume the mobilities are independent of 
temperature.) 

5.15 A semiconductor material has electron and hole mobilities I*,, and u,,. respective 
When the conductivity is considered as a function of the hole concenvatiun po, 
(a) show that the minimum value of conductivity, o,,,,,, can be written ar 

4 
I 

where mj is the intrinsic conductivity, and (b) show that the corresponding hole 
concentration is po = n,  (lr,,/lr,Jt/'. 

5.16 A particular intrinsic semiconductor has a resistivity of 50 0 -cm at T = 300 K 
5 R-cm at T = 330 K. Neglecting the change in mobility with temperature, det, 
the bandgap energy of the semiconductor 

5.17 Three scattering mechanisms are present in a particular semiconductor material 
If only the first scattering mechanism werc present, the mobility would be = 
2000 c r n ' ~ - s ,  if unly the second mechanism were present, the mobility would I 

= 1500 cm2N-s, and if only the third mechanism were prcscnt, the mobility 
be = 500 cm2N-s. What is the net mobility? 

5.18 Assume that the mobility of electrons in silicon at T = 300 K is u,, = 1300 cm 
Also assume that the mobility is limited by lattice scattering and varies as T-'/: 
Determine the electron mobility at (0) T = 200 K and (b) T = 400 K. 

5.19 Two scattering mechanisms exist in a semiconductor. II unly the first mechanisr 
present. the mobility would he 250 crn2/V-s. If only the second mechanism wen 
sent, the mobility would be 500 cm' /~-s .  Determine the mobility when both sca 
mechanisms exist at the samc time. 

- 5.20 The effective density of states functions in silicon can be written in the form :h 
- 

N, = 2.8 x l o f 9  Nu = 1.04 x 10" (!J2 

Asume the mobllrt~es are gwen by 

Assume the bdndgap energy 1s Ep = 1 12 eV and dependen t  of temperature I 
the lntrlnslc conductw~ty a? a functlon of Tover the range 200 5 T 5 600 K 

- - 5.21 (u)Assume that the electron mobility in an n-type semiconductor is given by 

- 
5 

I*. = 

where Nd is the donor concentration in cm '. Assuming complete ionization. pi 
conductivity as a function of Nd over the range 10" 5 N, 5 10" ern-?. (b) CI 
the results of part (a) to that if thc mobility were assumed to he a constant equa 



plot the electron d r~f t  current dens~ty of pans ( a )  and i h )  

Section 5.2 Carrier Diffusion 

5.22 Consider a sample of silicon at T = 300 K. Assume that the electron concentration 
varies linearly with distance, as shown in  Figure 5.14. The diffusion current density is 
found lo he I,, = 0.19 A/cm2. If the electron difision coefficient is U,, = 25 cm'ls, 
determine the electron concentration at x = 0. 

5.23 Theelectron concentration in silicun decreases linearly from 1 0 1 % m '  to 10" cm-' 
over a distance of 0.10 cm. The cross-sectional area of the sample is 0.05 cm'. The 
electron diffusion coefficient is 25 cm2/s. Calculate the electron diffusion current. 

534 The electron concentration in a sample of n-type silicon varies linearly from 10" cm ' 
at x = 0 to 6 x 10Ih cm+ at r = 4 pm.  There is no applied electric ficld. The 
electron current density is experimentally measured to bc -400A/cm2. What is the 
electron diffusion coefficient? 

5.25 The hole concentration in p type CaAs is given by 1, = 10'"l - x / L )  cm-' for 
0 5 x 5 L where L = 10 fim. The hole diffusion coeflicient is 10 cm2/s. Calculate 
the hole diffusirm current density at ( a )  x = 0, (h)  x = 5 fim, and ( c )  x = 10 um.  

5.26 The hole concentralion is given by p = 10" exp (-x lL, ,)  cm-' f<x I x 0 and the 
electron concentration is given by 5 x loL4 exp (+x/L , , )  cm-' for .r 5 0. The values 
of L,, and L,, are 5 x cm and lo-' cm, respectively. The hole and electron diffu- 
sion coefficients are 10 cm'ls and 25 cm2/s, respectively. The total current density 
is defined as the sun] of the hole diffusion current density at .r = 0 and the electron 
diffusion current density at I- = 0. Calculate the total current density. 

5.27 The hole concentration in germanium at T = 300 K varies as 

where x is measured in urn. If the hole diffusion coefficient is D, = 48 cm2/s, 
determine the hole diffusion current density as a function ofx.  

5.28 The electron cancentration in silicon at T = 300 K is given by 

Figure 5.14 1 Figure f o ~  
Problem 5.22. 
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where x is measured in /m and is limited to 0 5 x 5 25 p m .  The electron diffusio 
coefticient is L),, = 25 cm'ls and the electron mobility is p, = 960 crn'lV-s. The t, 
electron current density ihrough the semiconductor is constant andequal to J>, = 

-40 Alcm2. The electron current has both diffusion and drift current components. 
Determine the electric field as a function of x which must exist in the semiconducl 

5.29 The total current in a semiconductor is constant and is composed of electron drift 
current and hole diffusion current. The electron concentration is constant and is eq 
to I O l h  The holeconcentration is given by 

where L = 12 pm. The hole diffusion coefficient is D, = 12 cm2/s and the elecm 
mobility is u,, = I000 cm2N-s. The total current density is J = 4.8 Alcm'. Calcul 
(a) the hole difruion current density versus x, (b) the electron current density vers 
x, and ( r )  the electric field versus x. 

*5.30 A constant electric field, E = 12 Vlcm, exists in the +r direction of an n-type gall 
arsenide semiconductor for 0 5 x 5 50 um.  The total current density is a constant 
and is J = 100 Alcm'. At x = 0, the drift and diffusirm currents are equal. Let 
T = 300 K and p,, = 8000 cm2N-s. (a) Determine the expression for the electron 
concentration n(x). (b) Calculate the electron concentration at x = 0 and at 
x = 50 pm. (c) Calculate the drift and diffusion current densities at x = 50 pm. 

*5.31 In n-type silicon, the Fermi energy level varies linearly with distance over a shon 
range. At x = 0, E ,  - E F ,  = 0.4 eV and, at x = lo-' cm, E ,  - E,; = 0.15 eV. 
(a )  Write the expression for the electron concentration over the distance. (b) If the 
electron diffusion coefficient is D,, = 25 cm21s, calculate the electron diffusion 
current density at ( i )  x = 0 and ( i i )  x = 5 x lo-' cm. 

3.32 (u)  The electn~n concentration in a semiconductor is given by n = 10'" I - x/L)cl 
for 0 5 .  5 L. where L = 10 pm.  The electron mobility and diffusion coefficient 
p, = 1000 cm2N-s and D,, = 25.9 cm'ls. An electric field is applied such that the 
total electron current density is a constant over the given range o f x  and is J,, = 
-80 A/cm2. Determine the required electric field versus distance function. (b)  Repeat 
part ( a )  if J,, = -20 A/cm2. 

Section 5.3 Graded Impurity Distribution 

5.33 Consider a semiconductor in thermal equilibrium (no current). Assume that the  don^ 
concenvation varies exponentially as 

Nd(x) = Ndo exp (-ax) 

over the range O 5 x 5 I /u  where N,,u is aconstant. ( a )  Calculate the electric field 
as a function of x for 0 5 x 5 l /a. (b )  Calculate the potential difference hetween 
x = O a n d x  = I /u .  

5.34 Using the data in Example 5.5, calculate the potential difference hetween x = O and 
x = l pm.  

5.35 Determine a doping profile in a semiconductor at T = 300 K that will induce an 
electric field of I kVlcm over a length of 0.2 wm. 
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*5.36 In GaAs. the donor impurity concentration varies as N,,,, exp (-x/L) fo r0  5 x 5 L, 
where L = 0. l p m  and Nda = 5 x IOlh cm-'. Assume u,, = 6000 cm7/V-s and 
T = 300 K. (o) Derive the expression for the electron diffusion current density versus 
distance over the given range of x. (b) Determine the induced electric field that gener- 
ates adrift current density that compensates the diffusion current density. 

(a) Consider the electron mobility in silicon for N,, = 101'cm'  from Figure 5.2a. 
Calculate and plot the electron diffusion coefficient versus temperature over the range 
-50 5 T 5 200•‹C. (b)  Repeat pan (a) if the electron diffusion coefficient is given 
by D,, = (0.0259),~,, for a11 temperatures. What conclusion can be made about the 
temperature dependence of the diffusion coefficient? 

(n)Assume that the mobility of a carrier at T = 300 K i~ ,r = 925 crn'lv-s. Calculate 
the carrier diffusion coefficient. (b) Assume that the diffusion coei'ticient of a carrier at 
T = 300 K is D = 28.3 cm'ls. Calculate the carrier mobility. 

Section 5.4 The Hall Effect 

(Nore: Refer to Figure 5.13 fur the geometry of the Hall effcct.) 

A sample of silicon is doped with 1016 baron atoms per cm'. The Hall sample has the 
same geometrical dimensions given in Example 5.7. The current is I, = 1 mA with 
B: = 350 gauss = 3.5 x lo-' tesla. Determine ( a )  the HdI  voltage and ( b )  the Hall 
held. 

Germanium is doped with 5 x 10" donor atoms per cm' at 7 = 300 K. The dimen- 
sions of the Hall device are d = 5 x 10-' cm, W = 2 x 10-' cm, and L = lo-' cm. 
The current is I, = 250 PA. the applied voltage is V, = 100 mV. and the magnetic 
flux density is B: = 500 gauss = 5 x 10-' tesla. Calculate: (a) the Hall voltage, 
(b) the Hall field. and (c) the carrier mobility 

Asilicon Hall device at T = 300 K has the following geometry: d = lo-' cm, 
W = 10-' cm, and L = 10-I cm. The following parameters are measured: 
I, = 0.75 mA. V ,  = 15 V, Vti = +5.8 mV, and 8; = 1000 gauss = 10-' tcsla. 
Determine (a)  the conductivity type, (b) the majority carrier concentratjon, and 
(c) the majority carrier mobility. 

Consider silicon at T = 300 K. A Hall effect device is fehrir;rted with the fnllowing 
geometry: d = 5 x cm, W = 5 x lo-' cm, and L = 0.50 cm. The electrical 
parameters measured are: I, = 0.50 mA, V ,  = 1.25 V, and B; = 650 gauss = 
6.5 x lo-' tesla. The Hall field is E H  = -16.5 mV1cm. Determine (a) the Hall 
voltage, (0) the conductivity type, ( c )  the majurity carrier conccntretion, and (d) the 
majority carrier mobility. 

Consider a gallium arsenide sample at 7 = 300 K. A Hall effect device has been 
fabricated with the following geometry: d = 0.01 cm, W = 0.05 cm. and L = 0.5 cm 
The electrical parameters are: I, = 2.5 mA, V, = 2.2 V, and B; = 2.5 x 10.' tesla. 
The Hall voltage is VH = -4.5 mV Find: (a) the conductivity type, ( h )  the majority 
carrier concentration, (c) the mobility, and (d) the resistivity. 

Summary and Review 

5.44 An n-type ailicrm semiconductor resistor is to be designed so that i t  carrics a current 
of 5 mA with an applied voltage of 5 V. (a) If Nd = 3 x 10" cm-' and N,, = 0, 
design a resistor to meet the required specifications. (b) If N,, = 3 x 10'"m3 and % 



CHAPTER 5 Carrier Transpot? Phenomena I 

N, = 2.5 x 1016 ccm', redesign the resistor. ( c )  Discuss the relative lengths of the 
two designs compared to the doping concentration. Is there a linear relationship'! 

5.45 In fabricating a Hall effect device, the two points at which the Hall voltage is mea- 
sured may not be lined up exactly perpendicular to the current I, (see Figure 5.13). 
Discuss the effect this misalignment will have on the Hall voltage. Show that a valid 
Hall voltage can be obtained from two measurements: first with the magnetic field in 
the +z direction, and then in the z direction. 

5.46 Another technique for determining the conductivity type of a semiconductor is called 
the hot probe method. It consists of two probes and an ammeter that indicates the 
direction of current. One probe is heated and the other is at room temperature. No 
voltage is applied, but a current will exist when the probes touch the semiconductor 
Explain the operation of this hot probe technique and sketch a diagram indicating the 
direction of current for p- and n-type semiconductor samples. 
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